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Abstract—We describe the design, implementation, and pro-  The key innovations of our work are (1) the concept of
gramming of a set of robots that, starting from an amorphous  achieving shape formation by self-disassembly; (2) a first
arrangement, can be assembled into arbitrary shapes and tme hardware prototype capable of self-disassembly; and (3)

commanded to self-disassemble in an organized manner, to . S .
obtain a goal shape. We present custom hardware, distribute & suite of provably correct distributed algorithms capable

algorithms, and experimental results from hundreds of trais ~ Of planning and controlling self-disassembly in an optimal
which show the system successfully forming complex three- manner that minimizes information flow. The Miche sys-
dimensional shapes. Each of the 28 modules in the system istem serves as a hardware proof of concept and a testbed
implemented as a 1.8-inch autonomous cube-shaped robot &l ¢, yistributed algorithm development. The algorithms ever

to connect to and communicate with its immediate neighbors. . . . .
Embedded microprocessors control each module’s magnetic .de\(e.loped with the expecta_tlon that the physical size of
connection mechanisms and infrared communication interfaes.  individual modular robots will shrink and the number of
When assembled into a structure, the modules form a system robots in modular systems will grow. Efficient algorithms
that can be virtually sculpted using a computer interface anl  that pass a minimal number of messages will become a
a distributed process. The group of modules collectively dade necessity as modular systems become increasingly dense.

who is on the final shape and who is not using algorithms that Creati boti t d t obiects b If
minimize information transmission and storage. Finally, he reating robolic systems and smart objects by seli-

modules not in the structure disengage their magnetic coupigs ~ disassembly has one main advantage over existing ap-
and fall away under the influence of an external force, in this  proaches by self-assembly. Self-disassembling systetad en
case, gravity. a simple actuation mechanism (disconnection) which is gen-
erally easier, faster, and more robust than actively seekin
[. INTRODUCTION and making connections. The trade-off is three-fold. First
self-disassembling systems must start from a pre-assedmble
X ructure of modules. In our work, this block is assembled
that behaves as programmable matter (see Figure 1I). : .
i anually, but this process can be automated using mechan-
The approach to realizing programmable matter ussf . : ; . L
. . . ical fixtures. Although this process requires some addition
disassemblyas the fundamental operation to achieve shapeff . L : :
) ) . . effort, assembling the initial block, (due to its regulgyit
formation. The function of self-disassembling modulat . : : .
easier than immediately forming the more complex goal

robots can be thought of as ana_llogo_us to sculpting. V\}s%ructure. As additional modules are brought into contact
start with a large block made of individual modules. The

N A . : with the initial block, the modules already present provade
initial structure is transformed into the desired shape by . : . .
L apid and reliable means of alignment. Furthermore, until a
eliminating the unnecessary modules from the structure In Co o : . :
. . module is aligned with its neighbors, it remains unbound
a controlled fashion. Much like a sculptor would remove the : . .
and free to continue moving. With the help of external
extra stone from a block of marble to reveal a statue, our_ . . .
. . S environmental forces, it may even be possible for unbound
self-disassembling system eliminates modules to form the S .
oal structure modules to self—assem_ble an .|n|t|aI bIo_ck of mgterlal. The
9 ' second trade-off associated with actuation by disconoecti
is that external forces must be employed to remove unwanted
material from the system. Often, these forces can be found
in the surrounding environment. For our experiments, we
used gravity to pull unnecessary modules away from the
final structure. Third, unlike most self-assembling system
self-disassembling systems, because their only method of
actuation is disconnection, cannot reconfigure themselves
without jettisoning some number of modules.
Modular robots that can self-disassemble provide a simple

and robust approach toward the goal of smart structures and

We present a modular robotic system namkliche

Fig. 1. A self-disassembling system can transform from &iruniform
assembly of identical modules, (a), into a more interesting functional

assembly in (b). digital clay. A collection of millions of modules, if each wee
small enough, could form a completely malleable building
This work was supported by Intel and Magswitch. material that could solidify and then disassemble on com-

K. Gilpin, K. Kotay, D. Rus, and |. Vasilescu are with the mand. As in existing selective laser sintering systemsjdwh
Computer Science and Atrtificial Intelligence Lab, MIT, Caidbe, . .
MA, 02139, kwgi | pi n@ni t. edu, kot ay@sail . mt.edu, fuse particulate matter to create rapid prototypes), a self

rus@sail.mt.edu,iuliuv@rit.edu. disassembling robotic system would only require the user to



shake off the unused modules. A plethora of intelligent and. Related Work
organized disassembly and removal of extra material. and distributed robotics [YZR03], [CBWO02], [KKY*05],

The applications of self-disassembling systems includ&V03], [CWO00], [PEUCY7], [UKOO], [Yim], [WZBLOS],
entertainment, object creation by programmable matter, 38KGS06], [PCK"06] and self-assembling systems [Nag02],
printing and rapid prototyping, and all the other applica[WGOZ]- Most these systems are composed of_ identical
tions of self-assembling systems. Specific modules coul@odules that can connect to each other, communicate, have
be equipped with specialized actuators or sensors. After t§0Me actuation capabilities, and in general are able to co-
self-disassembly process completes, the these actuatdrs ¢ OPerate to perform a task as a group. Like in these prior
be employed for additional locomotion or manipulationSYyStéms, our modules can connect and communicate V_V'th
The added flexibility of removing specific components fronffach other in order to perform a global task. Our connection
the assembly ensures that our approach is especially wBlechanism is novel however and has some advantages.
suited to tasks requiring temporary supporting structureErevious systems use mechanical connections actuated by
For example, self-disassembling material could be appliedlape-memory alloys (SMA) [YZR03], [CBW02], [UKOO],
as an active scaffolding to help heal severely broken bon&§ by electric motors [RV03], electromagnetic connections
that would otherwise require the use of permanent steBVZBLOS], static permanent magnet connections [Yim] or
plates or pins. In addition to disassembling as the bone réMA actuated [KKY'05] or SMA springs [YMK'02],
grows, the scaffolding could provide valuable medicalustat [YKM *01]. A novel system for self-assembly and reconfig-

information to doctors. In such a scenario, the bloodstreaHfation is presented by White [WZBLOS] which uses fluid
could carry away extra modules. flow to bind individual modules together. In [PCR6], Pillai

_ ) _ . et. al. simulate using thousands of mechanically passivé mo

The first part of this paper is devoted to describing thgjes to construct digital representations of three-dirizevas
Miche hardware that we designed and built. Each modulgyjects. The CHOBIE robot developed by Koseki [KMI04]
is a cube whose faces are the PCBs used for the elgg-ynigue in its mechanical design. The modules in the
tronics and control of the system. (Although we chosgHOBIE system, which are also rectangular, are able to
identically sized modules, the system could be adapted jgcomote by sliding in two planes relative to one another.
employ completely passive modules as well as modules thghjike the previous mechanical systems, our modules have
were integer multiples of the fundamental unit size.) EacRo protrusions (they are flat faced cubes) and therefore they
module has on-board computation and power, point-to-poiRye less parts to break and are easier to assemble. Compared
IR communication with its immediate neighbors, and threg, s\mA and electromagnetic systems, our modules do not
switchable permanent magnets. These magnets provide fi& power in any of the states (they only use power for
connection between adjacent units and have the feature {nsijtions). One key advantage of a switchable magnet
activating or deactivating depending on their orientatiorgonnector is that the power used for actuation is almost
Three small motors capable of rotating the magnets providggependent of the final connection force.
the disconnection actuation in the system. We have built a The previous systems capable of programmable matter are
system consisting of 28 Miche modules. focused on using actuations to change the relative position

The second part of this paper describes the algorithn®¥ the module_s in order to a_\chieve their goals. In contrast,
employed to achieve shape formation by self-disassembfi€¢ System discussed in this paper creates desired shapes
Shape formation with Miche modules proceeds as followsolely by self-disassembly. This requires a suite of novel
First, an initial amorphous shape is assembled by hand (eg!PPort algorithms for shape formation, specifically eginti
see Figure 1(a)). The modules in this initial structure uséhd scalable distribution of shape information across the
local communication to establish their location within amodules, without, for example, the need of reprogramming
system of coordinates. After the initial configuration haghe modules as in [Nag02]. The algorithms in this paper have
been assembled, the user provides a goal shape for fH@vable time and_space C(.)mple)gty |.ImItS to ensure thel wil
system. Using local communication, the group cooperates %acgfully scal_e with the miniaturization qf the basic miedu
distribute this information so that all modules know whethe@nd increase in the number of modules in the system.
to remain as a part of the system or to extricate themselves. Il. MICHE HARDWARE
Finally, the unnecessary modules disconnect from the isyste

and drop off to create the desired shape (e.g. see Figurg 1(bc)0|:Igure 2 shows a Miche module prototype. Each module

ntains the resources necessary for autonomous operation
After describing the the hardware, algorithms, and systenpgocessing capabilities, actuation mechanisms, comraunic
issues associated with achieving such a distributed systetion interfaces, and power supplies. The modules are built
this paper presents our initial experimental results. Thigom six distinct printed circuit boards that interlock torn
system exhibits very reliable behavior. We believe this ia rigid structure. Two groups of three circuit boards eaeh ar
due to the actuation method employed for shape formati@oldered together to form the two halves of a cube. These
because it does not have to solve the challenging task tfo halves then mate using two friction-based electrical
forming precise inter-module connections. connectors so that the cubes can be easily disassembled for
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Fig. 4. Each Magswitch consists of two permanent magnetkestaon
top of each other inside of a metal housing. The bottom magnéked
while the top one contains a keyway and is free to rotate. Addh magnet
is rotated through 180 the entire device switches from on to off or vice
versa.

activated and attracts other ferromagnetic materialst o i
deactivated and releases it hold. The Magswitches do not
weaken with time because the south poles, (and north poles),
of the magnets in each Magswitch are only brought into close
proximity when the Magswitch is on and attached to the
steel face of a neighboring cube. As a result, the combined
Fig. 2. Each module in the system is a cube which measuresiricfigés magnetic flux has a “low reSI_Stance” pat_h from north, pqle
on each side and weighs 4.50z. Each module is completelyamious and 0 SOUth. The advantage of using Magswitches for activation
can operate for several hours under its own power. is that power is only consumed while changing the state of
the Magswitch. Once a Magswitch is on or off, it remains in
that state indefinitely. This is invaluable for the battefg |
testing and maintenance. When completely assembled, eaghthe modules.
cubic module is 1.8 inches on a side and weighs 4.5 0z. A miniature pager-sized motor with an integrated planetary
As shown by an open module in Figure 3, all electronigear box drives each Magswitch. These motors have a stall
components are surface mounted on the top side of thgrque of 0.280z-in [Sol06]. A 17-thread-per-inch worm gea
boards so that when assembled into cubes, all componepisyjyed to the motor's output shaft. This worm gear turns
reside on the inside. The only pieces of the system mounted30-tooth spur gear which has a key that matches the
externally are three steel plates that form half of the mtigne yeyway of the Magswitch shown in Figure 4. The entire
connection mechanism, presented in detail below. motor, worm gear, spur gear, and Magswitch assembly is
illustrated in Figure 5. When driven with./, the voltage
of a freshly charged lithium-polymer battery, the motor

Individual modules bind to each other using switchrequires approximately.2 seconds to switch a deactivated
able permanent magnet assemblies, hereafter referred topgggswitch on and back off again.

Magswitches. These assemblies are produced by Magswitch
Technology, Inc. [Mag]. Figure 4 shows an example
Magswitch. Three of the faces of each cubic module contain worm gear
Magswitches. Like all other components, they are mounted
on the inside of the cubes and pass through similarly sized top cover
holes in the printed circuit boards. The other three cubesfac
of each cube are covered by steel plates. The steel is cold
rolled A336/1008 that is 033 inches thick. When multiple F9- 5. A worm gear attached to the output shaft of a minia@@motor

. . turns a spur gear that mates with the keyway in the Magswiitcthe figure,
cubes are assembled into a structure, the Magswitches®lwaye magswitch is obscured by the spur gear, and the remoyeddeer of
attach to the steel plates of a neighboring cube, not onesof tthe entire assembly is shown on the left.
other cube’s Magswitches. As a result, the modules can only
attract one another. They do not repel but, instead, dependThe motor driver circuit consists of a single MOSFET. As
upon gravity or user intervention to clear unused modules result, the motor can only turn in one direction, but three
from any final structure. A single Magswitch connectedadditional MOSFETSs, which would be needed to run the
to a neighbor’s steel plate can support over 4.5 Ibs.—thaotor in both directions, are eliminated. The disadvantage
combined weight of 17 other modules hanging vertically. only being able to rotate the Magswitches in one direction is

The Magswitch assemblies control a magnetic field byhat a motor may stall while activating its Magswitch leayin

changing the relative orientation of two permanent disthe Magswitch stranded in a partially activated configorati
magnets. The magnet with the keyway shown in the assemkly is not uncommon for a motor to stall if its Magswitch
in Figure 4 can rotate freely with respect to the fixeds not in direct contact with a neighboring module’s steel
magnet that sits below it in the structure. Depending on th@lace or some other ferromagnetic material.) If the motor
two magnets’ relative orientations, the Magswitch is aithecould reverse directions, it would at least be able to return

A. Connection Mechanism

motor
spur gear

all Effect sensor



Fig. 3.  An open module shows all of its major components. Eamitains two microprocessors, connection mechanismsyred emitters and detectors,
an accelerometer, a tilt switch, and batteries. Each cubataly self-sufficient.

its Magswitch to the deactivated state. An analog Hall Effedrared based system does not require that the faces of neigh-
sensor is used to detect the state of each Magswitch. Thering cubes be completely flush. In an assembly of many
Hall Effect sensor is placed such that its axis of sensjtigt modules, this is a legitimate concern because imperfextion
aligned with the magnetic field produced by the Magswitchin the manufacturing process produce cubes that are not
As the Magswitch rotates, the Hall Effect sensor produceserfectly square nor exactly the same size. Electricalamiat
voltage that approximates a sine wave. would also be disadvantageous because they may short out
on the steel plates that cover three of the six cube faces.

In order to simplify the design of the circuit boards which

Each module contains two microprocessors that perforgbmpose the faces of the modules, the infrared LED and
different tasks. The primary microprocessor is a 32-bit ARMphotodiode were not always placed in the center of each
processor produced by Philips. It is responsible for all oface. This, and the fact that Magswitches must always contac
the high-level disassembly algorithms. The second processsteel plates, dictates that every module has only one valid
is an 8-bit programmable system on a chip (PSoC) that #rientation in a composite structure. Otherwise, the LEDs
manufactured by Cypress Microsystems. The PSoC handlgad photodiodes of neighboring cubes would not align.
the low-level functions that would otherwise occupy theHowever, because any self-disassembling structure must be
ARM. In particular, it implements six serial receive portsassembled by manually, this restriction does not affect the
one for each face of the module. This allows a single modukgnctionality of the system.
to receive messages from all its neighbors simultaneously.The infrared LED and photodiode have both a limited
The ARM and PSoC communicate using tR€ Iprotocol  range and a limited field of view. Like all of the electrical
[Sem00]. components, the LED and photodiode are mounted on the
C. Communication Interface inside _faces of thg modules, and they point outward through

o . .. holes in the circuit boards. In order to prevent these holes

Communication between modules is performed using iftom further restricting the field of view of the emitters or

frared light. Each of the six cube faces contains an infrargdcejvers, they are countersunk from the back (bottom) side
LED and an infrared sensitive photodiode. Together, these &y ihe boards.

low bidirectional communication between neighboring cibe
at 9600 bits per second (bps). While higher bit rates werg
achievable, 9600bps proved adequate. '
Infrared communication has several advantages over otherEach module is able to detect its absolute three-
alternatives such as direct electrical contacts. Firstinan dimensional orientation by using a two-axis accelerometer

B. Processors

Sensing



and a binary tilt switch that are connected to the ARM micro- 1ll. L ow-LEVEL COMMUNICATION AND CONTROL
processor. The accelerometer returns two PWM signals that

correspond to the acceleration that each axis is expenignci ; : .
X . o ules to disassemble, we have implemented a series of low-
The period of these signals is fixed, but the percentage of ope . )
evel functions that control the hardware in each module.

period that the signal is on is proportional to accelerationrhese routines place an abstraction barrier between the
The ARM microprocessor measures the pulse width of thle

. ; . s Ocalization, shape distribution, and disassembly athors
two signals to obtain an estimate of the cube’s orientation. . . .
. g . ; and the complex hardware contained in each module. This
tilt switch is needed to disambiguate the data produceddy th . . - ) o
) . separation facilitates the rapid implementation and modifi
two-axis accelerometer because the cubes exist and opera

in a three-dimensional environment. (The specific two-axi%a fon of the high-level concepts which are responsible for

. : o system’s visible behavior. The high-level algorithnes d
accelerometer used in Miche was chosen for its increase : . .
oo . . not have to contend with the specifics of basic tasks such as
durability in comparison to most three-axis acceleronseter

Like the accelerometer, the tilt switch was also chosentfor iexchangmg messages or acuva_lt.mg a Magsw!tch. .
Once a module has the ability to transmit and receive

durability. Instead of a typical mercury-filled glass cyler, ) .
Y yp y 9 v essages, the low-level operation reduces to the simple

each tilt switch uses a small metal ball bearing encas . L R

in a metal cylinder. While the tilt switch only tells the process |Ilustrat_ed n F|gur_e_6. Aiter |n|t|al|z_|n_g, a mdelu

microprocessor whether the module is oriented roughly uI ops for_ever, simply receving and tran_smlttlng messages
0 its neighbors. The interesting behavior responsible for

or down, this information, combined with the more precis o’ if-di bIV i d by how the hiah
data from the accelerometer, is enough to determine whi#ﬂe systems sell-disassembly 1S governed by how he high-

side of a module is facing down. evel algorithms for shape aggregation respond to received
messages.

To support the algorithms that allow our system of mod-

E. Power

Initialize
Each module is equipped with two rechargeable lithium-

polymer batteries connected in parallel. These battetips s

ply power to the module’s electronics and motors. They

provide 3.7V nominally and have a combined capacity of

340mAh. If the batteries are fully charged and the module

is continuously transmitting messages on each face but not Handle incoming
running its motors, the usable battery life is over six hours messages
The batteries drive the motors directly, but two voltage

regulators provide power for the electronics. One produces

3.3V which is used by all of the components. The other i
regulator produces 1.8V which is only used by the core of

the ARM microprocessor.

The modules can be recharged without removing the
batteries. Each module contains an integrated circuit that
manages the process. The electrical connection to recharge
the batteries is provided through two of the metal faces that
adorn the outside of the cubes. Large areas of solder mask are
missing on the bottom (outside) of two of the printed circuiFig. 6. The message processing loop executing on each misdsitaple.
boards that form the faces of the cubes in order to eledtyicalFirSt.’ 'modules initia]ize _aII their peripherals. Then, ythieop infinitely,

. . . ., receiving and sending inter-module messages. How a mocduémges
connect the steel plates to the circuit. To achieve a r@iabks internal state in response to received messages and mésgages it
connection, the plates are affixed with conductive epoxy. Toansmits in return, dictate the system’s high-level &bgi
recharge the batteries, the modules are set in a 28 inch long
trough whose metal sides supply a potential difference of All inter-module communications utilize the IR LED and
5V. The trough can recharge 15 modules simultaneouslghotodiode pairs that exist on each of the module’s six faces
Current to recharge each module’s batteries flows from thEhe process of transmitting a message involves severa.step
sides of the trough, through the metal faces and conductiérst, the message body is constructed. Then, a checksum
epoxy to the solder mask-free contacts on the back of th@oduced by a cyclic redundancy check (CRC) is appended
printed circuit boards. The integrated circuit resporesiior  to the message. Next, the ARM processor sen8&h TX
managing the charging process automatically detects wherCHANNEL command over the?C interface directing the
charging voltage is present. Therefore, starting or stappi PSoC to activate the RS-232 transmission multiplexer so
the charging process is achieved by simply placing thihat the message is directed to the correct face. After the
modules in, or removing the modules from, the chargin@SoC acknowledges that it received this command, the ARM
trough. sends the message over the RS-232 interface, through the

Initiate outgoing
messages




PSoC, and to the correct IR LED. Finally, once all bits have Reset
been transmitted, the ARM once again uses %40 bus to
deactivate the transmission multiplexer. Messages doofis ¢
ASCII characters. They start and end with a special characte
and have the format shown in Figure 7. Neighbor
Discovery
transmit face msg. type  optional type-specific fields ¢
L[ [of R [o[xix:x]e] ¢ eniRSum ||
start character on;;)yte { field delimiter cmd. terminator Localization
Fig. 7. Messages are composed of a start character, someenwhb ¢
alphanumeric data fields separated by ampersands, a heratiebecksum,
and a message terminator. Shape
Distribution
Receiving messages from neighboring cubes also requires ¢
several steps. First, the ARM must use tHe Ibus to
configure the digital-to-analog converter that drives tha-n Disassembly
inverting inputs of a set of comparators attached to the IR

photodiodes. (The comparators use this threshold value to

convert the analog output of each photodiode to a digitghg g The entire self-disassembly process consists of finases:
signal.) Once the DAC is configured, it will continue to sup-eighbor discovery, localization, shape distributiond aiisassembly.

ply a constant voltage. As a result, this step is only necgssa

when a module turns on. Assuming that the threshold voltage

is reasonable, the ARM proceeds to query the PSoC receipesition. At the end of the phase all the modules in the
buffers for the presence of any messages using@B€& structure are connected as solid block.

RX STATUS I2C command. If some buffer contains a valid During the localization phase, which follows neighbor dis-
message, the ARM issuesREAD RX BUFFER command covery, modules discover their positions within the stuoet

to retrieve the message. After the PSoC transfers a messagel transmit their positions back to a MATLAB program
to the ARM, it automatically empties the buffer that hadsee Figure 9) running on the user’s desktop computer. Lo-
been holding the message. Doing so allows the buffer to onealization messages are used to efficiently compute relativ
again begin filling with the next message that is received ogoordinates for each module in the physical assembly. Once

the specified face. each module has transmitted its position to the user’'s com-
The most important inter-module message types and aputer, the MATLAB program can form and display a model
breviations are of the system using a GUI. Using this model, the desired final
» acknowledge (ACK) configuration of modules can be virtually sculpted. Using th
« ping (detect neighbors) (PNG) GUI, the user selects whether each module is included or
« localize (LOC) excluded from the final shape. After this sculpting process
. reflection (inform system of module’s existence) (REF)s complete, the program generates a sequence of shape
« include in final structure (INC) distribution messages that is sent to the modules during
« disassemble (DAS) phase three. During this next shape distribution phase, the
. disconnect request for a specific Magswitch (DRQ) modules propagate the inclusion messages generated by the
« disconnect all Magswitches (DCA) GUI. The fourth, and final, phase is disassembly. During
the disassembly phase the modules not in the final shape
IV. DISTRIBUTED CONTROL AND PLANNING disconnect from the system to reveal the shape the user

These basic inter-module messages are used to driseulpted using the GUI. The entire self-disassembly pces
the high-level control algorithm for self-disassembly whi showing the GUI and the modular structure side-by-side can
is divided in four phases and shown in Figure 8. Eache seen in Extension 1.
of the four phases of self-disassembly is dependent on aOne important goal for the self-disassembly algorithms
distributed, localized message passing algorithm exegutiwas to compress required shape description information per
on each module. module and to minimize the required number of point-to-

The first phase, neighbor discovery, commences after tipint messages. Our decentralized approach is in contrast t
modules are reset. Modules are added manually to the initidde centralized approach where the entire shape deseriptio
assembly one at a time. During this phase, modules use loig- given to each module using global messages that can
level messages to detect any neighbors in close proximifipod the entire structure. The centralized approach does no
and attempt to establish mechanical and communicati@tale with respect to the number of modules in the structure
links. When a neighbor module is detected on a face, trend flooding becomes infeasible as the number of modules
Magswitch on that face is commanded to rotate to dne in the system grows. When flooding the entire system



with global information, the communication burden on eacla localization message is received on any face, the module
module rises in proportion to the total number of moduledalts the neighbor discovery process and proceeds to zecali
Additional inter-module communication requires incrahseitself and its neighbors. The code inside of the loop first
data storage and battery capacity. Furthermore, as the sieecks for new messages received on any of the six faces,
of the system grows, the modules will be forced to shrinklines 8-9). Line 11 check whether a new message was
and the amount of processing ability, storage capacity, amdceived on a face that has a Magswitch. If any type of
electrical power available to each will diminish. Efficient message was received on a face that has a Magswitch, line 12
distributed algorithms that only require local knowledde oactivates that Magswitch.

surrounding modules are therefore crucial to a large modula Lines 15-21 process incoming messages based on their
system’s viability because distributed algorithms mirdeni type. If a module receives an acknowledgment on any face,
the processing, storage, and communication demands pladedtops transmitting ping messages on that face because

on each module. any further ping messages would be redundant (lines 15—
16). It is also possible that a module receives its neiglsbor’
NZH& & aa”s ¢ 06 = 2 ping message before an acknowleglge message. In this case,
L i (lines 17-18), the module transmits one acknowledgment
et N message on the receiving face in response. Finally, if a
e e S localization message is received, th®@C-Receivedariable
EEE Eﬁjﬁiﬂé&li is set, (lines 19-20), and the neighbor discovery proceds en
Loc. 01,0 U0 3 with all message transmission queues being purged (lines 25
27).

The range of the IR system is limited to approximately
0.25 inches (see Section Il). This range has prevented false

or detections in all observed cases. Because neighbor discove
e occurs independently on each cube, it only requitgs)
T NN - | time for the phase to complete. At the end of the neighbor
I discovery phase, the modules have formed a solid structure,
Rt s peermes | aRicacassor and they are ready for localization.
#0681 28INCEGEILe 0BT
Lasalze I Gen. Seq | T Seq I Disassem! hle’ #0837 EINCE28289M 4
s Faea026EiNGaEaeaast B. Localization Algorithm
s uel e The localization phase ensures that each module discovers
T e its absolute three—dimensional coordinates in the system.
&

Localization gives each unit a sense of its place in the
structure and of its local neighborhood, in the absence of a
Fo o, A hical tert GUD i 4 1o virtuadieulot th global view of the entire structure. No module in the system
inli%.al (.:onfiggrr:tri)orzczf ;Soeéuagsegnat‘gea (morez ilr?t:rseestingﬁ\grtl?atigrLlj.pHer; has such a global view and the structure formation algorithm
modules that will be included in the final structure are shawmed, and does not rely on it. In our implementation we use the GUI
those that will not be included are shown in blue. The list bothe lower g5 g way of visualizing and sculpting the structure. Because
&gohéu?f?:ﬁgsdgieiiqrizngsbgf) meseages that wil be Laleshtd the 100t o this, localized modules inform the GUI of their placement
which, in turn builds a global image of what the system.
The localization process originates from a root node.
A. Neighbor Discovery Algorithm A module in the system gets designated as root. In our

The Miche system is initialized by creating a structurel.mplementatlon the root module has a wireless Bluetooth

communication link to the world. The user can initiate the
The modules are put togetheand they connect to one o .
. ; : . localization process by sending a message from the GUI to
another using a neighbor discovery algorithm.

During neighbor discovery, every module uses its IR LEDthe root node. The coordinates of the root node(&®,0)

and photodiodes to detect and connect to its neighbors. T e Figure 10(a)).

i . ; ..Upon receiving a localization message, each module can
pseudocode for the neighbor discovery phase is provided . . ) o
: . : ) compute its coordinates and the coordinates of all its immed
in Algorithm 1. On lines 3-5, every module begins by

-~ . : te neighbors. The coordinates are tagged onto a forwarded
transmitting ping messages on all faces. The third argument ~ .~ <. I .
e . . localization message as shown in Figure 10. This process
(infinity), to the TxEnqueue function on line 4 ensures

that the ping, (PNG), messages are transmitted forever ((:)?ntmues as a breadth-first process until all the modules

. - . are localized. Figures 10(c-f) show localization messages
until a TxPurqueQueuecommand is issued. The algorithm represented by single arrows), propagating through the th
then loops through the pseudocode contained by lines §- b y sing » Propagating g

. 2 . . -by-3 structure.
22 until a localization, (LOC), message is received. Once Algorithm 2 illustrates with pseudocode the algorithm

IModules are assembled manually in our current implememtatal- that ea(?h module uges to localize. The algorithm operates
though an automated assembly mechanism is possible. by looping through lines 5-36 check each cube face for
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Fig. 10. Localization messages, represented by the singltharrows, propagate from one module to the next and caeyldcation of the receiving
module. Once a module is localized, it transmits a reflectimssage, represented by double arrow, to its parent anéntually propagates back to the
root module.

localization, (LOC), messages. When the first localizatioa double arrow. These pointers always point from a module
message is received, line 8 sets the module’s parent tim its parent. The figure illustrates the fact that a module’s
the face on which the localization messages was receivgshrent pointer always points toward the neighboring module
Lines 9-10 extract and store the module’s assigned positidrom which it first received a localization message.

in two different variablesLocation and L. Lines 13-33  |n addition to initiating the transmission of a reflection
then loop through each of the modules six faces sendingessage on its parent face, each module also forwards any
acknowledgment, (ACK), and reflection, (REF), messages t@flection messages that it receives from its neighbors on to
the module’s parent and new localization messages to eag§ parent face. Eventually, all reflection messages prajeag

of the module’s five potential neighbors. Lines 18-30 argack to the root module and from there to the GUI. Such
responsible for computing each neighbor’s position giveg process, as will be shown later in this section, guarantees
the direction in which the neighbor lies. Line 31 transmitghat the GUI receives a reflection message from each module
the new localization message to each potential neighbor 1@0the structure. In other words, starting from any module in
times. While not highlighted by pseudocode, the acknowkigure 10(f), one can trace a path back to the root module
edgment messages transmitted in line 15 cause the receivifig following the modules’ parent pointers. Algorithm 3
module to stop transmitting localization messages in ordepntains the pseudocode which forwards reflection messages
to conserve power and processing resources. To show thgta module’s parent. This pseudocode, combined with the
the localization algorithm operates correctly, we firstwho |ocalization pseudocode in Algorithm 2, demonstrates that
that each module receives a localization message. Then W reflection messages eventually reach the root module.
show that these messages all contain the correct positionTpaorem 1:Assuming that inter-module communication
information. Finally, we show that the algorithm termirgte g always reliable, the localization algorithm ensurest tha

In our implementation we visualize the localized structur€ach module determines its position in the structure in a
in the GUI. Therefore, once a module is localized, it needénite amount of time.
some way of informing the GUI that it exists. To do so, every  Proof: By assumption, we know that the root module
module transmits a reflection message to the GUI after it i®ceives a localization message because we use the GUI to
localized. Specifically, the modules only transmit the efle send that message. Because the root retransmits the message
tion messages on their parent faces. A module’s parent fat®e its neighbors, we know that all of the root’s neighbors
is defined as the first face on which it received a localizatioreceive a localization message. The neighbors also retians
message. Figure 10 denotes each module’s parent face usiing message. By induction, aft&riterations, all modules



Algorithm 1 The neighbor discovery algorithm broadcast®lgorithm 2 The localization algorithm ensures that every
ping messages on each face until it receives an acknowledgedule determines its position and that each informs the
ment at which point it stops broadcasting ping messages @Ul in turn.

the receiving face and activates the face’s Magswitch. 1: procedure LOCALIZE()

1: procedure DISCOVERNEIGHBORY ) 2. Localized— FALSE
2 LOC-Received- FALSE 3
3 for face— 1 to 6do 4: while Localized= FALSE do
4 TxEnqueue(face PNG, «) 5: for face<— 1 to 6do
5: end for 6: msg— RxDequeuéface)
6: 7: if MsgType(msg = LOC then
7 repeat 8: Parent— face
8 for face« 1 to 6do o: L «— ParseLocation(msg
o: msg«— RxDequeuéface) 10: Location— L
10: 11: Localized— TRUE
11: if (msg#0) AND (HasMagSw(face)) then 12
12: Activate(MagSwitch,e) 13: for i —1to6do
13 end if 14: if i = Parentthen
14: 15: TxEnqueue(Parent ACK, 1)
15: if MsgType(msg = ACK then 16: TxEnqueue(Parent REF, 100)
16: TxPurgeQueudface) 17: else
17: else if MsgTypgmsg = PNG then 18: if i =1 then
18: TxEnqueue(face ACK, 1) 10: L' =L+(1,0,0)
19: else if MsgTypgmsg = LOC then 20: else ifi =2 then
20: LOC-Received- TRUE 21: L =L+(0,1,0)
21: end if 22: else ifi = 3 then
22: end for 23: ' =LC+(0,0,—-1)
23:  until LOC-Received 24: else ifi =4 then
24: 25: L =L+ (07 -1, O)
25 for face«— 1 to 6do 26: else_lifi =5 then
26: TxPurgeQueugface 27 L =L+(0,0,1)
27: end for 28: else ifi = 6 then
28: end procedure 29: L' =L+ (-1,0,0)
30: end if
31 TxEnqueue(i,LOC_,100)
32: end if
which are at mosk units away from the root along any 3z3: end for
contiguous path are localized. 34: return
Now we show that every localization message receiveds: end if
by any module correctly identifies the module’s position 36: end for

(In reality, we only need to show that the first message?r: end while

is correct because the pseudocode ignores all localizati®s: end procedure

messages after the first.) Again, by assumption, we know

that the root is correctly localized because we use the

GUI to tell the root module its position. Because of that receives. Once all modules in the structure have received

symmetric and independent way in which the coordinates |ocalization message, no additional localization messag

of each localization message are modified as the messaggp be sent. u

propagates, (incrementing the x—coordinate when a messagerheorem 2:All reflection messages reach the root mod-

is passed to a module’s right and decrementing the Xje.

coordinate when a message is passed to a module’s left, etc.) proof:

no matter which path a localization message follows from the After localization, some neighbor of the root must have a

root to any other module, the final coordinates contained Walid parent pointer that points to the root. (If this were no

the message when it reaches that module will be identicahe case, localization messages could not have propagated

Therefore, each localization message received by any reodygh any other module in the system.) For the remainder of

will contain the same set of coordinates and the module W'”'IIS proof’ a valid parent pointer is one which points to a

localize correctly. cube which already has a valid parent pointer. The root’s
Finally, the localization algorithm terminates becausghea neighbors, like all other modules, do not transmit localma

module only responds to the first localization message thatessages to their neighbors until they have a valid parent.




As a result, any localization message that another modui@al shape. In our implementation the final shape is selected
receives originates from a module with a valid parent. Bynanually by the human user via the GUI. The root node
induction, all parent pointers must be valid, and they muss always part of the final structure and therefore contains
eventually lead to the root. B a path to every node in the final structure. (Note: a simple
algorithm modification exists which relaxes this constrain
Algorithm 3 Once localized, each module forwards allon the root module.)

reflection messages received from its neighbors on to its Message generation can be divided into the three steps
parent. This ensures that all reflection messages eventuathat are seen in Algorithm 4. First, the algorithm constsuct

reach the root module. graph that contains information about the assembled simreict
1: procedure HANDLE REF MEssAGHmsg face of modules. Second, the algorithm performs a breadth-first
2: if Localized= FALSE then search (BFS) on the graph to find the shortest distance
3 return between the root module and all others. Finally, the al-
4 end if gorithm employs a depth-first search to traverse the graph
5: and produce a set of inclusion messages. Such complexity
6 TxEnqueue(face ACK, 1) is necessary for several reasons. First, one cannot assume
7 TxEnqueue(Parent msg 100) that the initial structure is a regular or constant shape, so
8: end procedure inclusion messages cannot follow any standard path through

the modules from one use of the system to the next. Second,
There is no need to explicitly terminate the localizatiorih® modules do not have a concept of the entire structure,
process because modules that do not receive localizatibn a#f they alone cannot be responsible for managing the entire
inclusion messages assume that they are not a part of the fifiting process. Finally, as the size of the system expands,
structure, and they disconnect by default when they receilkeis impractical to transmit detailed routing informatiais
disconnection messages. part of each message because the amount of information will
In order to analyze the running time of the localizatiorB"oW guadratically with the number of modules, (one factor
algorithm, we assume an upper bound on the amount of tinkgr the additional number of messages and another factor for
required by a module to process any messages that it Hhe additional information contained in each message).

received and produce outgoing messages in response. We— _ _
denote this upper limit on a module’s processing time Algorithm 4 The message generation algorithm uses a BFS

If there aren modules in a system, the running time of thel© find the shortest path from the root to all modules and

localization algorithm isO(nt) because the modules could"e" Uses a DFS to generate the sequence of messages to be
form ann—unit chain, and each module could require time transmitted.

to forward the localization message. Therefore, the tinre fo L procedure GENERATE INQ MESSAGES )

the localization messages to reach the end of the chain i§ Construct graph, W'th a vertex f(_)r e_ach_ module_
O(nt). More generally, the time to complete localization in and an edge for each viable communication interface in

. . . . final structure
an arbitrary structure with the longest chain of lengths
o(mt) y 9 ot 3 Construct a new graph of shortest pati@, by

performing a BFS or to find shortest path from the

¢ root to all other modules

: Perform DFS orG’ to determine inclusion message
sequence, sending message to modules according to the
order in which they were first encountered during the
DFS

5: end procedure

We cannot claim af®(mt) bound on the time it takes for
reflection messages to return to the root because the chain o
parent pointers may be longer them the longest of the set
of shortest paths from the root module to any other. Some
chain of modules may process localization messages quickly
leading to a situation where a module thatkisinits away
from the root receives its first localization message from a
module that isk+ 1 units away from the root. In such a
situation, the reflection message would need to travel tifrou  The first step in generating the inclusion messages is to

at leastk other modules before reaching the root. generate a graphG(v,e), in which every module of the
) _ ) final configuration is a vertex. Then the algorithm adds
C. Inclusion Message Generation Algorithm edges between vertices whose corresponding modules have

In order to transform an initial configuration of modulestouching faces. An example is shown in Figure 11. Part (a) of
into an arbitrary shape, the desired shape needs to the figure shows the shaded modules that should be included
communicated to the system. We developed an algorithm G. Figure 11(b) shows the first step in the construction
that enables us to communicate the structure to the systerh G: vertices have been added for every module that is
without transmitting the entire shape to each module in the part of the final structure. Figure 11(c) sho@sonce
system. Instead, for a given shape specified by a user, eomplete: edges have been added between all nodes whose
algorithm determines a sequenceimflusion messagebat corresponding modules are neighbors. This construction of
are automatically synthesized based on the desired shdpe &is performed by line 2 of Algorithm 4.
then communicated to the modules that end up being in the After the final configuration of the system is modeled,
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Fig. 11. The desired final configuration of a structure of 9 uiesl is shown in (a) where shaded cubes represent modukeshiiald be included in
the final structure. As shown in (b), the first step in genegai sequence of inclusion messages is to construct a graigh wdntains a vertex for every
module in the final structure. Edges, inserted in (c), reprethe face that modules are neighbors.

the time to construc6 is O(n), wheren is the number of Initial G: Result of BFS:
modules that will be a part of the final structure. For each (1.0,0) 1.00)
of the n modules, the algorithm must insert up to six edges  ©° @00 (000
in G, one for each neighbor that is also included.

After the graph,G, of modules in the final structure is ©-10)
determined, the algorithm performs a BFS®mo determine
the shortest path between the root vertex and all other
vertices, (line 3). A BFS produces the shortest paths becaus
all paths have unit length [CLRS01]. The BFS modifiés
now referred to asG’ so that it becomes a breadth-first @ ()
tree. To produces’, any edge inG that is not part of a
shortest path from the root module to any other module isg. 12. Performing a breadth-first search®rthe initial adjacency graph
eliminated. We want to find the shortest paths between tff&(a) produces the breadth-first tré®, shown in (b). The search eliminates

any edge which is not a part of the shortest path from the ramtute to

root and all other nodes because these paths are the sequq;qé%ther_
of modules that the inclusion messages should follow. Iheac
inclusion message follows the shortest path between the roo
and its destination module, the shape distribution algorjt |nstead, as the DFS progresses, it generates an inclusion
discussed in Section IV-D, will be as efficient as possible. message for each module as it is encountered for the first

Figure 12 shows how the initiaG is transformed into time. Table IV-C shows one possible order in which the
a breadth-first treeGG’ by the BFS. The edge between themessages are generated from the breadth-first tree shown in
modules at positionf0, —1,0) and(1,—1,0) is eliminated in  Figure 12(b). The contents of these messages and the way
the breadth-first tree because moving from the r@@t),0), they are distributed is addressed in Section IV-D.
to the module at1,0,0) and then to the module &t, —1,0)
provides an equally short path from the root to the module TABLE |
|Ocated at (1,_1’0) as fO"OWing the path throu@h—l, 0) THE INCLUSION MESSAGE FOR A MODULE IS GENERATED THE FIRST

The typical BFS algorithm executes @(V + E) WhereV TIME A DFSENCOUNTERS THAT MODULE IN THE BREADTHFIRST TREE
iS the number Of Vertices ar@ iS the number Of edge in the G'. THIS ORDERING OF INCLUSION MESSAGES WAS GENERATED USING
graph [CLRSO01]. In our system, the number of edges is never
more than six times the number of vertices because each [ Order | Module encountered

(2,0,0)

(1,-1,0) (0,-1,0)

(1,-2,0)

THE BREADTH-FIRST TREE INFIGURE 12(B).

module has only six faces. Therefore, the running time of % 5(11883
the BFS isO(n), wheren is the number of modules included 3 (2.0.0)
in the final structure. 4 (1,—1,0)

Once the message generation algorithm has constructed 2 Eé’:f’gg

a breadth-first tree’, of all modules that are a part of
the final structure, it performs a DFS of starting at
the root to determine the order in which the modules will The running time of the DFS algorithm when applied to an
be notified that they are a part of the final structure. Thiarbitrary graph iQ(V +E) [CLRS01]. As discussed above,
is illustrated by line 4 of the algorithm. Becaus® is we can refine this bound t®(n), (wheren is the number
already a tree, no additional edges are removed by the DFS. modules in the final structure), because no vertex has



more than six edges. The entire message generation procgorithm 5 The shape distribution algorithm checks
completes inO(n) time because each step of the algorithmwhether the hop count of the inclusion message is zero. If

(constructingG, performing the BFS, and walking down theit is, the module assumes that it is a part of the structure.
tree using the DFS) require(n) time. Otherwise, the hop count is decremented and the message is

forwarded along the inclusion chain.
1: procedure DISTRIBUTE SHAPE( )

D. Shape Distribution Algorithm

The set of inclusion messages computed in the previous:
step is distributed automatically and efficiently in the Nec  3:
system. Initially, all modules assume that they are not & par4:
of the final structure. Upon receiving an inclusion messages:
each module learns that it is in the final structure. 6:

Each inclusion message carries two important pieces of:
information: a hop count and a branch direction. As thes:
inclusion messages are distributed by the structure, aalirt 9:
chain of inclusion pointers is formed. The hop count field1o:
of each inclusion message dictates how far down this chait:
each message should travel. Once the message has reacted
the specified depth in the chain, it extends the chain bys:
including the module specified by the branch direction. Sucha4:
an algorithm avoids encoding the detailed path that eacts:
inclusion message much follow, and it also avoids floodings:
the entire system with a number of inclusion messages equsi:
to the number of modules in the final structure. This schemss:
also has two advantages: each module must only storei&
constant amount of information (the branch direction), anco:
the size of the inclusion messages remains constant as the
size of the system expands. Algorithm 5 shows this algorithrz2:
implemented in pseudocode. 23:

Included«— FALSE
INC-Chain-Ptr<— 0
DAS-Received- FALSE

repeat
for face«< 1 to 6do

msg— RxDequeuéface

if MsgType(msg = DAS then
TxEnqueue(face ACK, 1)
DAS-Received- TRUE

else if MsgTypgmsg = INC then
TxEnqueue(face ACK, 1)

hc — ParseHopCountmsg
bd — ParseBranchDirectionmsg

if hc=0 then
Included«— TRUE
TxEnqueue(face REF, 100)
else ifhc=1 then
TxEnqueug(bd, INCp_,,100)
INC-Chain-Ptr— bd

The algorithm operates as follows. It begins in lines 2—24: else
by assuming that the module is not included in the structures: TXEn-
and that the module has no inclusion chain pointer. It then queue(INC-Chain-Ptr,INCth(hcil),loo)
loops, checking each face for new messages, (lines 7-8%: end if
until a disassemble, (DAS), message is received. When 2a:
disassembly message is received, the algorithm transmits as: end if
acknowledgment, (ACK), which causes the module whictz9: end for

transmitted the disassemble message to cease transmittdty ~ until DAS-Received
additional disassembly messages. At this point, the alyori  31: end procedure
also sets th®AS-Receivedariable so that the shape distri-
bution algorithm terminates.

When the algorithm receives an inclusion (INC) message,
it parses the message for the hop couht),(and branch the final destination of the message by examining the branch
direction, pd), fields, (lines 15-16). Then, the a|gorithmdirection field of the inclusion message. The branch dioecti
performs one Of three actions depending on the hop Couﬁiﬁld Contains a number Corresponding to one Of the mOdu|e’S
The first Option’ listed on line 18’ occurs when the hop Cour{ﬂces. It is this face that touches the module that is the final
of the received message is zero. This is an indication thégstination of the inclusion message. Therefore, the branc
the inclusion message was originally destined to include thdirection field indicates in which direction the inclusion
module. As a result, the module now realizes that it is g'€ssage should be forwarded. In line 22, the algorithm
part of the structure, (line 19), and transmits a reflectiofPrwards a modified inclusion message whose hop count is
message, (line 20), back to the GUI. (Like the reflectio€ro to the neighbor specified by the branch direction field.
messages transmitted in response to localization message$? addition, as shown in line 23, the module updates its
follows a chain of parent pointers to reach the root moduleiiclusion chain pointer to reflect where to forward the next
The reflection message informs the GUI that the module waRclusion message.
successfully notified of its status in the final structure. The third and final action is prompted by the receipt of an

The second case, presented on line 21, occurs when tihelusion message in which the hop count is greater than or
hop count of the incoming message is one. This signaéqual to two, (line 24). In this scenario, the module should
that one of the module’s neighbors is the final destinatiohave already received at least two inclusion messages: one
of the message. The module determines which neighborirscluding the module itself, and another including one of




its neighbors and assigning a valid direction to its in@dasi  Theorem 3:The shape distribution process ensures that
chain pointer. When a module receives such a messagegwtery module that should be included in the final structure
decrements the message’s hop count and forwards it aloregeives an inclusion message.
in the direction of the module’s inclusion chain pointer as  Proof: To show that the shape distribution algorithm
shown on line 25. operates correctly, we need to show that every module in the
Figure 13(a-d) illustrates the evolution of an inclusiorfinal structure receives an inclusion message. Additignall
message as it is forwarded from the root mody@®0,0), we need to show that modules not destined to be a part of
to the next module that should be included in the structumie final structure do not receive inclusion messages.
(1,—2,0). In the figure, the message is represented by the Based on the pseudocode in Algorithm 5 and the ex-
straight arrow. One can observe the hop count decreasipnation of the pseudocode, a module forwards inclusion
as the message passes farther down the existing inclusioessages properly if the module’s inclusion chain poirger i
pointer chain, which is represented by the arced arrowsonfigured correctly. This pointer is configured correcfly i
When the message reaches the neighbor of new moduletite module receives an inclusion message destined for one
Figure 13(c), it causes that moduld, —1,0), to update its of its immediate neighbors before it receives an inclusion
inclusion chain pointer. The result is seen in Figure 13(d).message destined for any module farther away from the
root. In fact, this is exactly what happens because the DFS

>

(1,»1,0))

Hops =3 Hops = 2 generates an inclusion message firgt time that it encoun-
Branch = Down Branch S Down ters each module. The inclusion messages for modules past
T~ T~ the current one are generated later. As a result, a module
1 1 will always have a valid inclusion chain pointer before it
‘1"“’)) (1"1'°)> needs to forward inclusion messages to modules other than
its neighbors. This means that the inclusion messages are
@20 ) always forwarded correctly and that each module that should
receive an inclusion message does.
Now that we know that every module in the final structure
receives an inclusion message, it is easy to see that no other
@ (b) modules do. This is based on the fact that the message
generation algorithm only generates one inclusion message
Hops = 1 Hops = 0 for each module in the final strl_Jcture. If all modu_les _that
Branch = Down Branch = Down are supposed to be part of the final structure receive inclu-
L0 /\(1""’0) (@) /(1\",)’0) sion messages, there are no additional inclusion messages

that could be received by the other, soon to be discarded,
modules. Therefore, the shape distribution algorithm afesr
correctly. [ ]

The running time of the shape distribution algorithm is
O(nt), wheret be a bound on the transmission of a message
and n the number of modules in the structure. Each of the
n modules in the final structure requires a separate inclusion
message to be transmitted from the GUI to the root module,
where it will be distributed. The GUI does not have to
Fo 13 Aninclus ed by the strai wait for one inclusion message to reach its final destination
L i nelson message ebrEserled e sUIMATOYSSS before sending another. Instead, timeafer sending the
been included in the structure. As the message propagétisioivs the first inclusion message to the root, we know that the root
arced inclusion chain pointers until it reaches the modtigaaition (1,- has finished processing the message and can now accept
L) ahoun, 1, e ol he branch eclon Govalect e another. Afer another units of time, the root has passed
own inclusion chain pointer. the second inclusion message on to one of its neighbors and

can accept a third message. The same constraints also apply

The progression of several inclusion messages that aeall other modules in the system, so the system can accept
destined for different modules is pictured in Figure 14one new inclusion message everynits of time. Therefore,

In this structure, modules with addresg€s0,0), (1,0,0), the system require®(nt) time to include alln modules in
(1,-1,0), (0,—1,0), (2,0,0), and(1,—2,0) are supposed to the final structure.

be included in the final structure. The six inclusion message ) )

needed to notify the six modules of their destiny are injgcteE: Disassembly Algorithm

into the system at the root modul@®, 0,0). From there, they =~ Once all modules which need to be included in the final
propagate to their destination modules, which are shadstfucture have received inclusion messages, the system is
after they know that they are supposed to be a part of theady to disassemble. The disassembly process is initiated
final structure. when the GUI is instructed to send a disassemble message.

(1,-1,0)
(1,-2,0)
(1,-2,0)

(c) (d)
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Fig. 14.

Six inclusion messages are transmitted by the GUhéoroot module in order to include six modules in the finalicttire. The messages

propagate by following the arced inclusion chain pointengil uhey reach their destinations. The branch directiod anitial hop count for each message
is indicated. Once a module knows that it is part of the finalcstire, it is shaded. Sometimes, as shown in (e), somesindichain pointers remain
intact even after the active chain has shifted away.

Pseudocode for the disassembly algorithm is given imessages are propagated identically to localization rgessa
Algorithm 6. When a module receives a disassemble meBrom above, we know that once each module receives a dis-
sage, it transmits an acknowledgment to the transmitteassemble message, it only disconnects from the structure if
(line 13), and forwards the disassemble message to all of ttse module has not received an inclusion message. Therefore
other neighbors, (line 15). Modules that are included in ththe disassembly algorithm operates correctly. [ ]

final structure perform no further tasks except to deadivat Tpe running time of this phase can be analyzed in terms

specific Magswitches at the request of their un-includegs t, the upper bound on message transmission mnithe
neighbors. In comparison, modules that are not a part of thgmper of modules in the structure. Once a disassemble
final structure attempt to disconnect. First, they deativamessage reaches a module, the time required for the module
all three of their Magswitches, (line 20). Second, for anyy gisconnect from its neighbors @(1). Therefore, if there
face lacking a Magswitch that is attached to a neighbor, theye n modules in the structure, the time for the disassemble
send a disconnect request (DRQ) message to that neighlqg@ssages to propagate to all module©isit). This worst

(line 22). In return, the neighbor receiving the disconnetase occurs when the modules form a single chain.
request message deactivates the Magswitch on the receivingAS with the localization algorithm, we can provide a

face regardless of whether that module is a part of the hter bound if bl d imethe | h of th
final structure. With all of their Magswitch deactivated anq:g ter bound if we are able to determimgthe length of the

the adjacent Magswitch of their neighbors deactivated, u ongest of the set of shortest paths from the root module to

included modules are free to fall away from the remainin?" other modules. In this case, the amount of time required

structure. or the disassemble message to reach all modul€Xrnst).

Th 4The di blv algorith v di ¢ The disassembly algorithm currently transmits a disas-
corem 4. The disassembly algonithm only dISCONNECS. o e message to every module in the structure. This
those modules which should not be a part of the fin

spect of the algorithm can be optimized. An additional

structure. optimization can be introduced in the algorithm because all
Proof: We need to show that disassembly messagesodules not included in the goal structure deactivate their
reach each module and that only the specified moduldsagswitches regardless of whether they need to or not.
disconnect. Based on the correctness of the localizatidthowever, an algorithm which attempts to minimize these two
algorithm discussed in Section IV-B, we know that disasinefficiencies is impractical for a number of reasons. First
semble messages reach all modules because the disasseritdeextra modules must deactivate all their Magswitches



Algorithm 6 The disassembly algorithm propagates anpegins to disconnect its Magswitches. The system does not
received disassembly message on all faces and only instrugfait for all modules to receive the message before sloughing
the module to disconnect from the structure if it has nots unused members. As a result, disassembly occurs almost

received an inclusion message instantaneously.
1: procedure DISASSEMBLE ) ) )
o DAS-Received- FALSE F. Power Consumption Analysis
3: The power consumed by the Magswitches in each module
4 repeat is the obvious factor in calculating the power consumption
5: for face— 1 to 6do of the system. Even modules that remain a part of the
6: msg— RxDequeuéface final structure must devote a significant amount of power to
7: activating their Magswitches during the neighbor discgver
8: if MsgType(msg = DAS then phase. Modules not included in the final structure must again
o DAS-Received- TRUE use energy to detach from the system. Because each module’s
10: for i — 1to 6do Magswitches actuate at most twice during a complete self-
11: disassembly sequence, the power consumed by each module
12: if i =facethen is O(1), and the power consumed by the entire system is
13 TxEnqueue(i,ACK, 1) O(n), wheren is the total number of modules.
14: else Message passing will also contribute to the system’s power
15: TxEnqueue(i,DAS,100) consumption. The modules closest to the root will need to
16: end if pass a large number of messages, with the root passing the
17: most. The number of messages passed by the root during
18: if NOT Includedthen neighboring discovery and disassemblyO&L). Because no
19: if HasMagSw(i) then message is dependent on the size of the structure, the power
20: Deactivatg MagSwitch) needed for message passing during neighbor discovery and
21: else disassembly is als®(1). During the localization phase, the
22: TxEnqueue(i,DRQ, 100) root passes a message to the GUI for each ohtheodules
23: end if in the structure. The resultant power consumption for tlo ro
24: end if is O(n). The power consumed by the entire system during
25: localization is O(n?). This limit is reached when system
26: end for is configured as am-unit chain in which the root passes
27 end if n messages, the second module in the chain passes
28: end for message, the third— 2, and so on. A similaO(p?) power
29: until DAS-Received bound applies to the shape distribution algorithm excegt th
30: end procedure p represents the number of modules in the goal structure.

(The root will pass one inclusion message of eachpof
modules in the final structure.)

In a small system such as ours, the largest power drain will
before they are reused in another structure. (If they dioe devoted to actuating the Magswitches. In a large system
not, alignment during assembly is difficult.) It is easier toconsisting of thousands or millions of modules, the power
precipitate this deactivation en masse when all modules adevoted to message passing may begin to surpass the power
connected than to individually deactivate each moduler afteledicated to Magswitch actuation. Which factor dominates
disassembly. Second, an algorithm which only deactivées twill depend on the specifics of the given system. Because
minimum number of Magswitches is computationally inteneach module carries its own power source, @{@) power
sive. Unfortunately, the algorithm is not as simple as tugni used by the Magswitches can be adequately supplied even as
off any Magswitch which borders on the goal structure. Sucthe number of modules in the system becomes infinite. The
an algorithm fails in the case where the goal structure @mount of energy a module can store will eventually limit
surrounded by two or more layers of unused modules. Tithe growth of very large systems because the power needed
innermost layer would detach from the goal structure, bubr inter-module communication will eventually exceed the
the outer layer(s), because they encase the goal structu@al energy stored in all modules. Even the act of sharing
would maintain the initial configuration of the structure.power between modules will be unable to meet the demands
Because each module only has information about its neaf the system.
est neighbors, determining which unused modules need to
deactivate their Magswitches is difficult and may require
intense communication with a number of distant modules. While Section IV proves that the self—disassembly algo-
Finally, the algorithm we have presented operates just riéhms work in theory, the algorithms, as described in that
quickly in practice as a more selective algorithm. Shortlghapter, sometimes fail in practice. The primary cause of
after an unused module receives a disassemble messagdailtire is lost messages, which can occur for two reasons.

V. PRACTICAL IMPLEMENTATION



First, these algorithms sometimes fail to successfullydnait not used while system—critical messages, (like inclusiush a
messages to the modules’ neighbors. Second, neighborirgflection messages), are being propagated. Table V-A shows
modules are sometimes unable to communicate because tlivep which of the two categories each type of messages falls.
were poorly aligned. While we could attempt to carefully

align the modules as we assembled them, imperfections in TABLE Il

the manufacturing process make it difficult to ensure that ALLMESSAGESTHAT DO NOT NEED TO BE TRANSMITTED ON A

every LED/phototransiStor pair was ab|e to Communicate. Fo SPECIFIC FACE FALL INTO TWO CATEGORIESEITHER THEY MODIFY
examp|e, one mOdU'e that iS not perfectly square can aﬁe§YSTEM—WIDE PROPERTIES THAT INVALIDATE THE DATA CONTAINED IN

the alignment Of Several neighboring mOdUIeS. TO aCCOUﬁtJY MESSAGE THAT MUST BE RETRANSMITTED ON A CERTAIN FACEOR

for misa"gnment' we imp|emented two mOdiﬁcationS to the THEY DO NOT PROPAGATE THROUGH THE SYSTEM AT THE SAME TIME
Self—disassembly algorithms. Section V-B details how Wé\S MESSAGES THAT NEED TO BE RETRANSMITTED ON A CERTAIN FACE

made the localization process robust to misalignment. ThenMessage Type | System-wide Mod| Not Prop. Concurrently]
Section V-C explains how we modified the way inclusion Disconnect Al CA) Yes No
distributed by appending additional infoomat Discon. Requestti Mo Jes
messages are Istributed by p_p Ing X 1 ! ! Magswitch State N5S) No Yes
to all reflection messages. This resulted in a more reliablereset RST) Yes No
shape distribution phase. Real Time Clock RTC) Yes No
Ping PNG) No Yes
o Localization {OC) No Yes
A. SynChromzatlon DisassembleIAS) Yes Yes

We found that if a module was attempting to send several

messages to a neighbor in quick succession, that some of . ) .
those messages were lost. We traced this problem back td't IS acceptable for messages which modify system-wide

the way in which the transmission buffers were implemente®roperties to override destination—specific messagesuseca
When one of the high—level routines transmits a message 8ty make irrelevant any information contained in a desti-
a specific face, the new message overrides any message f}3{on specific message. For example, a reset message can
was already buffered for transmission on that face. Thegefo safely override any mclusmp or reflecuon.messag.e becau_se
if the message that was already pending in the buffer has nghen the system is reset, it forgets any information that it
yet been received by the neighboring module, it is lost. As 82 amassed through the passing of inclusion and reflec-
result, if a module is busy communicating with many of ition messages. Likewise, we never need to consider some
neighbors, some of those neighbors, in their hurry to transn{N€SSages overriding destination spgcmc messages b_ecause
messages to the module, may drop some messages. those messages are not presented in the system during the
To rectify this problem, we synchronized the message@me time _penods. For example,_a quule finishes passing
passing process. When a module receives any high—Ie\?é\ localization messages before it t_)eglns to pass reflectio
message that has a specific destination, (e.g., a shapie didi}€SSages. As another example, disassemble messages are
bution or reflection message), it does not send an acknovPlY injected into the system after all inclusion and refect
edgment immediately. Instead, it first checks to see if th&'€Ssages have been sent. In practice, the synchronization

transmission buffer for the face on which the message shoufyStem described in this section effectively eliminatessc-
be retransmitted is empty. If the buffer is empty, the algol®S in which messages are lost because they are overwritten

rithm handling the message transmits an acknowledgmeffile in a transmission buffer.
back to the sender and then places the new message in the L o
transmission buffer of the appropriate face. If the needed Localization Modification
transmission buffer is not empty, the module never trarsmit In the localization algorithm presented in Section IV-B,
an acknowledgment back to the sender. As a result, tllee modules assume that the first face over which they
sender continues transmitting the message until the neededeive a localization message is their parent face. This
transmission buffer on the receiving module is available. Ais problematic because the ability to receive inter—module
a result of this synchronization, messages that have specifiessages on a specific face does not correlate with the
faces over which they need to be forwarded, never overridaility to successfully send messages on the face. Using the
any message already being transmitted on that face. Inafgorithms presented in Section IV, modules had parensface
common scenario, this prevents one inclusion message fran which they were unable to transmit, (or the parent was
overriding another. unable to receive). Some modules were able to localize, but
All of the lower—level messages presented in Section Ilthey were unable to tell the GUI of their existence because
(except acknowledge and not acknowledge messages),tiey could not transmit reflection messages, (which follow
addition to ping (PNG), localization (LOC), and disasseenbla sequence of parent pointers), back to the GUI. This type
(DAS), messages automatically override any message &lreaaf error affects more than just the modules that are unable
in a face’s transmission buffer because they do not hawe successfully transmit information to their parents.|#oa
specific destinations. This is acceptable because these mafects any module whose chain of parent pointers passes
sages fall into one of two categories. They either modifthrough another module that cannot communicate with its
system—wide properties of the structure, or else they aparent.



To rectify the problem, we modified how modules localizeis supposed to be in the final structure cannot communicate
Instead of blindly accepting the first neighbor that trartsmi with a neighbor that is also a part of the final structure, no
a localization message as its parent, each module first she@dge is inserted between them.
whether two—way communication with that neighbor is pos- Accounting for missing communication links makes the
sible. This check does not require any additional mess#gessystem more reliable and does not increase the theoretical
two—way communication is possible, the module should haveinning time of the shape distribution algorithm because on
received an acknowledgment to one of the ping messageglusion message can still be transmitted from the GUI to
it sent during the neighbor discovery phase. If the moduléhe root everyt time units, the maximum amount of time
never received an acknowledgment of any of its pings, itequired by any module to process a message and generate
assumes that two—way communication with the neighbor & response. It is the case that some inclusion messages will
impossible and waits for another neighbor, with whom two-have to travel longer than optimal paths in the structure to
way communication is possible, to transmit a localizatiomeach their destinations. This implies that some messaijes w
message. travel through more modules than they did in the optimal

This modification has two effects on the system. Firstscenario. Therefore, the message load on some modules will
some modules, even if they can receive localization mefacrease, and may increase in turn.
sages, may not localize. This does not affect the system’s .
functionality because those modules would be unable f3- Disassembly Challenges
inform the GUI of their presence even if they did localize. If Although the algorithms presented so far guarantee that all
the GUI does not know about a module’s existence, it dogsodules not selected to be a part of the goal structure break
not matter if the modules are localized or not because thélpeir Magnetic bonds with their neighbors, the algorithms
would be uncontrollable anyway. do not guarantee that the modules are able to physically

Second, the modification to the localization algorithnseparate from the initial configuration. Even with the help
affects its running time. It is no longer reasonable to assunof gravity, some modules may not be able to separate from
that localization messages can flow along the shortest pdtre goal structure. These situations can be grouped into
from the root module to any other. Even if the structure ighree sets. The first set consists of all extra modules that
not a single chain, some localization messages may haveate completely surrounded by the goal structure. Without
travel through allh modules in the structure before reachinga break or opening in the goal structure, there is no way
the final module. We can no longer claim thatnifis the for these surrounded modules to separate themselves, and
length of the longest of the set of shortest paths from thi@r all practical purposes, they remain a part of the goal
root module to any other, the running time of the algorithm istructure. The existence of this set implies the obvious: it
O(mt). Instead, the running time of the localization algorithmis impossible to form hollow structures from an initial sbli
is O(nt), wheret is the maximum time required by any block of material.
module to process a message and generate a response.  The second set with disconnection challenges is composed

o o of all extra modules which rest above some part of the
C. Shape Distribution Modification goal structure. These modules are problematic because they

The localization process is not the only aspect of the higheannot be removed from the structure by gravity alone. When
level self—disassembly algorithms which can be affectetthey deactivate their Magswitches and fall, they will come
by communication failures. If a module cannot transmito rest on the goal structure. Some additional effort must
or receive on specific faces, the shape distribution procebs made to remove these modules. For example, the entire
may be impeded. The original message generation algorithgoal structure could be shaken or rotated until all unused
presented in Section IV-C assumes that modules can reliabtyodules fully separate. This set of modules does not, in
communicate with all of their neighbors. As a result, it st theory, prevent the formation of any type of structure. In
inclusion messages through the faces which lie along theractice, the existence of the set ensures that some goal
shortest path from the root to any module included in thetructures will require additional manipulation beforeyth
final system configuration. Unfortunately, these paths magre completely realized.
sometimes cross faces which are unable to communicate withThe third set contains all extra modules whose movements
their neighbors. are constrained along one or more planes. For example,

To operate successfully, the message generation algorittam extra module whose left and right faces border on the
needs to know which faces can successfully communicatmal structure falls into this class. In some cases, thi®set
and which cannot. To transmit this information to themodules may overlap with the second class mentioned above.
GUI, we modified the reflection messages. In addition tégnoring the problems that these modules may be experience
the transmitter’s location and user identification (UINet when resting above the goal structure, modules that are a
reflection messages were modified to include a field thabnstrained in one or more planes may become wedged
indicates with which neighboring modules the sender capetween their neighbors in the process of separating from
successfully communicate. The GUI uses this informatiothe goal structure. As before, this is not a theoreticalibarr
when constructing the graph, G, of all modules which aréo the success of disassembly. It can often be overcome with
supposed to be included in the final structure. If a module thaome additional manipulation or vibration of the structure



Better hardware design would also all alleviate the proklenor inclusion message. In general, all modules receive their
associated with this class of modules. messages several seconds before they can notify the GUI that
they have been received resulting in a difference between th
split and final times.

VI. MICHE EXPERIMENTS

A. Neighbor Discovery Results

We tested the neighbor discovery process with modules
that had anywhere from one to six neighbors. The neighbor
discovery process worked correctly in all cases. When two
modules were brought into close proximity with each other
and aligned, they each detected the other’'s presence and
latched together. Sometimes, if a module was poorly aligned
with a neighbor, it failed to detect it. Shifting either of
the modules slightly tends to fix this problem. Even if
two modules are not adjusted, and communication remains
impossible, it is unlikely to compromise the overall rellét
of a large system. In general, every module neighbors skevera
others, so communication and structural links are redundan
Note that articulation points in the initial configuratiorea
critical to the system'’s reliability. If communication thugh
such a point is impossible, communication with every node
Fig. 15. The final robot-like shape we “self-disassemblesihg an initial - gjsta] to the articulation point will also be impossible.dar
3-by-5 rectangle of modules. From start to finish, the smlfgsembly . .. . .
process required a total of approximately 90 seconds exguany time  INitial experiments, it was never the case that a module was
spent modeling the desired final shape. unable to communicate with all of its neighbors. In all of the

191 tests that we recorded, every single module successfull

Figure 15 shows an example shape sculpted by the Micltennected to the structure through at least one point and
system. This shape was generated out of a 3-by-5 singlerepared for localization. That means the neighbor disgove
layer sheet of 15 modules. The root module was located process operated correctly over 1,200 times.
the center of both axes. The final shape was the humanoidOf course, there were some connections between neigh-
robot shape shown in Figure 15. The ability to form aoring modules that failed to form, but these never hampered
humanoid shape is far from the limit of the Miche systemthe neighbor discovery process on a system-wide scale. We
Any solid 3D shape that can be constructed from 28 moduldégund that if a module had only one or two neighbors it
is achievable in this system. Specifically, we have genératevas simple to align it such that connections were always
a 15 module dog out of 27 modules, a flower, and manseliably formed. As the number of neighbors increased, & wa
abstract geometries. Each of these experiments has beeare difficult to ensure that a module connected to all of its
repeated multiple times. neighbors. Fortunately, because of the additional reduryda

In addition to experimenting with a range of shapes tassociated with additional neighbors, the higher conaecti
observe correctness, reliability, and overall completiore, failure rate was acceptable.
we performed close to 200 experiments aimed at character- o
izing the running time for the phases of the self-disassgmbP- Localization Results
algorithms on three canonical shapes: chains, squares, andn each of the 191 experiments, we also characterized
cubes. The rest of this section details the experiments dotiee localization algorithm. We could observe and time the
with the canonical shapes. algorithm’s progress in two ways. First, we were able to

To measure the running time of each algorithm, we usedraonitor the algorithm’s progress by watching the LED on
stopwatch feature built into the MATLAB GUI that controls each module. After a module localized, it began to flash its
the system. A timer begins counting in fractions of a secondED. Second, as specified by the localization algorithm, the
after the user instructs the GUI to begin the localization omodules transmit reflection messages after they are lechliz
shape distribution process. After either of these promess@/hen one of these messages propagates back to the desktop
begins, pressing a key on the desktop computer’s keyboazdmputer connected to the root module, the module that sent
causes the GUI to record and display a split time. Pressinlge message appears in the GUI. Using the GUI, we were
either the localization or shape distribution button a selco able to measure the amount of time required for the LEDs
time halts the associated process and the timer. The total all modules to begin flashing and the amount of time
elapsed time is then displayed separately from the splé.timrequired for all modules to appear in the GUI. We measured
The split time can be used to record the time required for alhese times for linear, square, and cubic structures cdreifft
modules to simply receive localization or inclusion messag sizes. We were not able to measure the amount of time
The total measured time indicates the time required for atequired for all LEDs to begin flashing in a cubic structure
modules to notify the GUI that they received a localizatiorbecause the LEDs of the modules at the bottom and center




of the structure were obscured by other modules. In these -
cases, we were still able to record how long it took before Norm of the Fiting Error:1.857
all modules appeared in the GUI. ol ) %;

First, we measured the amount of time required for a line :
of modules to localize. We recorded the localization tintes f =
chains of modules that were one, four, seven, and nine units all e
long when the root module was at the end of the chain. In
the case of one module, we performed twenty experiments. lor P
Because a single module localizes so quickly, we were
unable to accurately resolve the amount of time required st
for the module’s LED to begin blinking. We were able to
accurately record how quickly a single module appeared in . - ‘ ‘ ‘ ‘
the GUI. We performed 16, 15, and 15 experiments for the 0 2 1 (lengih of chain) 8 10
4-, 7-, and 9-module cases, respectively. Figure 16 ittissr
the mean and standard deviation of the time required for all _ _ , _
user LEDs to begin binking. Likewise, Figure 17 present&% 1T, he ime reaured for i efecion messages vty o
the mean and standard deviation of the time required for alle chain. The circles in the plot represent the average rémeired for all
modules to be displayed in the GUI. Both figures show &eflection messages to propagate back to the GUI. The whiglssociated
linear relationship between the number of modules in th&!th each data point span two standard deviations.
chain and the time required for all to localize and transmit _ o

. .y Time for All Modules to Localize in a d-by-d Square
their positions back to the GUI. 28 ‘ : : ‘ :

261 Norm of Fitting Error: 0.353
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12r fit because the localization time
15F * - of one module was too short
1F to resolve accurately.
e Note: n=1 not included in linear
e fit because the localization time 0.8 ! : . . .
1r s of one module was too short 1 0 5 10 15 20 25 30
7 to resolve accurately. n (d2 / number of modules in square)
0.5 .
0 2 4 6 8 10
n (length of chain) Fig. 18. There is a linear relationship between the numbemodlules

in a square structure and the amount of time required for atutes
to receive a localization message. The circles representitierage time
Fig. 16. The time required for a chain of modules to localigdiriear in  for each different experiment. The associated whiskershreme standard
the length of the chain. The circles represent the average tequired for ~deviation in each direction.
all modules to localize. For each different experiment, wigskers span
two standard deviations. When fitting the line to the date,dhe—module
case was ignored because it was too difficult to resolve the tiequired

t localize one module. for all modules in a cubic structure to receive localization

messages, we did measure the amount of time required for
The next experiment that we carried out used 1-by-1, 2-bwll of the modules to appear in the GUI. As before, the
2, 3-by-3, 4-by-4, and 5-by-5 square assemblies of modulemot module was chosen to be a corner of the structure.
In this set of experiments, the root module was alway$he number of different experiments we could run was
chosen to be a corner module. We performed 20, 16, 17, 18nited by the number of cubes available, (27), but we did
and 6 trials for the 1-, 4-, 9-, 16-, and 25-module squarespnduct 20, 16, and 6 experiments for 1-, 8-, and 27—
respectively. The time required for all modules to receivenodule cubic structures. The results of these experimeets a
the localization messages and activate their LEDs is shovamown in Figure 20. As with the 1— and 2—dimensional cases,
in Figure 18. The time required for all reflection messages tine figure shows a linear relationship between the number
return to the GUI, where they appear as modules, is shovai modules in the structure and the time required for all
in Figure 19. In both figures, we have plotted the averageflection messages to propagate back to the GUI.
times as circles, and the whiskers represent the standardConsidering all of the localization experiments we exe-
deviations of the different experiments. Both plots, esggc cuted, the success rate of the localization algorithm was
the second, demonstrate a linear relationship between teecellent. In the 191 experiments, we only encountered 2
number of modules and the localization time. occasions where a single reflection message did not prop-
Although we were unable to measure the time requiredgate back to the GUI. Considering that the equivalent of
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Fig. 19. The time required for all reflection messages tramsdby a
square structure of modules to reach the GUI is linear in dt& humber
of modules in the square. The circles in the plot represeeataberage
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whiskers associated with each data point span two standmvidtidns.
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Fig. 20. In a cubic structure, the amount of time requiredaforeflection
messages to propagate back to the GUI is linearly relatdukettotal number
of modules. The circles represent the average time reqforezhch different
sized cubic structure. The associated whiskers reach andatl deviation
in each direction.

over 1,500 cubes were used in the experiments, this failure
rate is less than one percent. Unfortunately, it is difficult

cube.) This discrepancy can be explained by the fact that the
modules were running the modified localization algorithm
presented in Section V-B. This is the algorithm that checks
whether the module can successfully transmit messages to
whichever neighbor it chooses as its parent. As shown in
Section V-B, the theoretical running time of this algorithm
is O(nt) and agrees with our results.

The experiments also found a strong linear relationship
between the number of modules in a structure and the time
required for all reflection messages to return to the GUIsThi
agrees with theD(nt) bound we proposed in Section IV-B
for the receipt of all reflection messages. In the case of the
reflection messages, there was never any guarantee that they
would return any faster tha@(nt).

C. Message Generation Results

The message generation algorithm worked flawlessly. In
each of the 191 experiments, we used the GUI to include all
the modules of the initial configuration in the final struetur
In all cases, the GUI successfully generated the shortest
possible path for all messages while taking into account
the constraints imposed by pairs of neighboring modules
that were unable to communicate with one another. In the
five cases where not all modules in a structure received
the inclusion messages destined for them, the source of the
failure was narrowed to a bad communication channel or a
faulty cube, never an incorrect message path.

The time required for the GUI to generate sequences
of messages is quantified in Figure 21. The plot displays
the time required to generate message sequences for chains
of modules in which the root was placed at one end and
all modules are included in the final structure. The figure
demonstrates a linear relationship between the length of
the chain and the time required to generate the sequence.
This matches the theoretical bound ©fn) presented in
Section IV-C.

Time Required to Generate Sequences of Inclusion Messages for 1-by-n Chains
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to locate the source of the errors. The reflection messages
typically travel through several modules, making it difficu

to track a specific message. It is also possible that, due to
a malfunctioning module, the missing messages were never
transmitted.

Ignoring these two failures, the experiments were conclu-
sive and indicate a linear relationship between the number
of modules in a structure and the time required for all of
them to receive a localization message. This supports the
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message. The experiments do not support the tighfent)
that we also proposed in that section. (Regalis the longest

the plot considers the time required to generate sequencees$ages to
include every module in an—-unit chain. The circular data points represent
the average time required for eanhand the whiskers span a total of two

of the set of shortest paths from the root module to any othestandard deviations.

and it scales linearly with the side length of any square or



D. Shape Distribution Results

For each of the 191 experiments that we performed, we
included every module that was a part of the initial struetur
in the final configuration. While not interesting from the
perspective of disassembly, including every module in the
final structure provided the most stringent test of the syste
As mentioned in Section IV-D, modules assume they are
not a part of the final structure unless they receive an
inclusion message. Therefore, including every module in
the final structure required that the maximum number of
inclusion messages be distributed by the structure. Fdr eac
experiment, we attempted to measure both the time required
for all modules to receive their inclusion messages and the
time for the associated reflection messages to return to the

time [sec]

GUI. We were able to measure the amount of time requiregy. 22.
for all modules to receive their localization messages bipclusion messages varies s In the plot, the circles represent the average

watching the user LEDs on the modules and using the sp .
function of the timer in the GUI. When a module determines
that it is a part of the structure, it changes its LED from
flashing to solid.

The specific experiments we used to test the shape distri-
bution algorithm were identical to the experiments used to
test the localization algorithm. We began by measuring the
time required to send inclusion messages to all modules in an
n—unit chain when the root module was placed at one end of
the chain. We repeated this experiment 20 times for 1 cube;
16 times for a chain of 4 cubes; and 15 times for chains
of both 7 and 9 cubes. We plotted the average time for all
inclusion messages to reach their destinations in Figure 22
The plot shows a quadratic relationship between the number
of modules in the chain and the time required for inclusion

messages to reach them all. We also measured, and plotted

in Figure 23, the time required for all reflection messages
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to return to the GUI. Typically, the last reflection message€ig. 23. Given a chain of modules, the time required for thd @Ueceive

returned to the GUI shortly after the last module receiveallofthe reflection messages that are sent during the shstpiation phase
IS quadratic in the length of the chain. The circular datanfsoare average

its inclusion message, so the time required for all iNClISiOgimes and the whiskers span a total of two standard deviation

messages to propagate back the the GUI is also quadratic in
n, the total number of modules in the system.

We have also performed 16 trials with 2-by-2—module
squares; 17 trials with 3-by-3 squares; 18 trials with 44by-
squares; and 6 trials with 5-by-5 squares. In each test, we
chose to place the root module in the corner of the square.
The average time required for all modules to receive their
inclusion messages, (and the associated set of error bars),
is shown in Figure 24. Figure 25 shows the closely related
time required for all reflection messages to return to the.GUI
Figure 25 does not include a data point for the case of a
25 module square because in the six trials, there was never
an outcome in which all 25 reflection messages returned
to the GUIL. One or two messages always went missing.
Both figures show a strong quadratic dependence between
the number of modules in the square and the time required
for the shape distribution phase to complete. |

We also experimented with modules arranged to form 'f%
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Fig. 24. There is a quadratic relationship between the numbmodules
a square structure and the amount of time required for alfiutes to
ceive an inclusion message. The circles represent tihaga/éme for each

cube. We performed 16 experiments with an 8—-module CUt_lﬁferent experiment. The associated whiskers reach aredatd deviation
and 6 with a 27—-unit cube. The 20 trials with a single modul& each direction.



a0 Eum Time for Allinclusion Reflection Messages in a d-by-d Square In cases where several inclusion messages were not re-
Norm of Fitting Erfor: 3.167 ceived during one experiment, the cause could generally be
250] ] traced back to one poorly aligned IR LED/photodiode pair
that had possibly shifted since the modules decided it was a
valid message path. Because of the way inclusion messages
P are distributed, a malfunctioning communication inteefac
150r P ] can affect all modules which depend on that interface being
a part of the inclusion pointer chain that delivers their
inclusion messages. Even though 17 messages were lost, this
number is still less than 2 percent of the more than 1500
inclusion message that had to be sent over the course of all
experiments.

There were also 26 reflection messages that did not
propagate back to the GUI. This is also less than 2 percent of
o 25 The i od for all reflecti b the total number of reflection messages sent during the shape
sé]gu.are .of moedullénsedher?#gl]reshag«ra ?iistrreibjt(i:c;gnton:zziig;se iguUadréti?: dlstnb-utlon phase for all eXpe”ment_s' One explanation f9
in the number of modules in the chain. The circles in the pigiresent  the slightly higher number of reflection messages that did
the average time_ required for_ all reﬂg}ction messages toagaip back to ot return to the GUI during the shape distribution phase in
ghef/i;%'ﬁghe whiskers associated with each data point spanstandard .. 3 ison to the localization phase is that during the shap

' distribution phase, the reflection messages must contehd wi
the inclusion messages which are also propagating through
were also included in this set of experiments because aesinghe system. The total number of messages places a high load
module is also a cube. As before, we placed the root modute the system, and it is possible that some messages reached
at the corner of the structure. Figure 26 shows the timéeir timeouts before being acknowledged by a neighboring
required for inclusion messages to reach each module in theodule. This explanation is supported by the fact that most
structure. The three data points can be fit perfectly by eeflection messages were lost in larger square and cubic
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quadratic function. structures in which the modules near the root are handling
a proportionally greater number messages than in smaller
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L Section IV-D theorized that the running time of the shape

distribution algorithm would b&(nt), wheren is the number

of modules in the system, andis the time required for

the slowest module to process a message. All experiments
indicate a quadraticO(n?), running time. This quadratic

i ] relationship may be explained by the way MATLAB behaves

when loaded with too much serial data. MATLAB, when

sor {, -7 ] faced with a large amount of serial data, begins to drop or

T corrupt many of the messages received from the root module.
o 5 10 15 2 P In turn, this slowdown affects because the synchronization
n G/ number of modues in cube) process described in Section V-A couples how quickly the

modules can exchange messages with how quickly MATLAB
Fig. 26. The three average times required to transmit if@mumessages can process them.
to all modules in a cube can be fit perfectly by a quadratic tianc The
average times, shown by the circles, are bounded by whiskeich extend E Disassembly Results
one standard deviation in each direction.
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The disassembly process itself was not specifically tested
Over the course of all 191 experiments, we encounteredter each of the 191 experiments. It would have required
5 cases where some number of inclusion messages were tom much time to allow the modules to fall apart and then
received. This accounted for a total of 17 messages that wesassemble them by hand. Additionally, the self-disasgemb
missed. This means that in 5 cases, the desired structaed reassembly process would have required activating each
would have been incorrectly formed after one attempt dflagswitch twice. Over time, it would have amounted to a
shape distribution. This is a.&% error rate. By checking significant drain on the batteries of each cube and would
for the correct set of reflection messages in the GUI, it ihave required more frequent recharging. Instead of sending
easy to determine whether the shape information has beenlisassemble message after each experiment, we sent a reset
distributed correctly. If it has not, additional attemptnde message. Reset messages, like disassemble messages, are
undertaken without restarting the entire system. propagated by broadcast and quickly reach all modules in a



structure. In each of the 191 recorded experiments, the rese
messages successfully reached all modules. This allows us t
conclude that disassembly messages would also have reachec
all modules.

For a more specific test of the system’s ability to disas-
sembly, we analyzed the formation of the humanoid structure
mentioned at the beginning of this section and shown in
Figure 15. Starting from the same 3-by-5 sheet of modules,
we attempted to form the humanoid 26 times. In all but two
cases, every module that was not supposed to be a part of the
final humanoid structure disconnected. The two errors were
traced to a single Magswitch that was jammed and unable
to deactivate. After it was fixed, there were no additional
problems. For 10 of the 26 humanoid tests, we suspend the
initial 3-by-5 sheet of modules horizontally to see if the un _
necessary modules would fall away after they disconnectef 2, i i, 04 009 ves constuctea ot of 27 modeleloc
In seven of these experiments, all extra modules fell awayagnet. The excluded blocks fell off the structure.
from the structure. In the other three cases, a single scrap
module became wedged between two of its three neighbors
while it was falling away from the structure. Based on the&omponent in the performance of the Miche system is
15 experiments in which the running time was recordedjoint-to-point message transmission. All of the steps in
the average time required to create the humanoid structufee self-disassembly algorithm rely upon robust message
was 90 seconds. This total consists of the time for neighbtiansmission and reception. Ignoring the fact that modules
discovery, the time for module location in the structurefan become wedged while trying to fall away from the
the time for generating the location messages needed ffructure, all of the errors we observed were due to message
the shape transmission, and the time for propagating tikansmission or reception failures.
location messages. Disconnecting the excluded modules fro
the structure happens nearly instantaneously and in phrall
around the structure. Therefore, the disconnection time is This paper proposes the concept of realizing three-
excluded from the average creation time. dimensional shapes by self-disassembly and provides a com-

To further test the physical disassembly process, we geplete solution that spans hardware design, systems infras-
erated a dog, as shown in Figure 27, five times. One trial tsucture, distributed algorithms, and experiments. Mgkin
recorded in Extension 2. In each case, the self-disassemioligjects bysculptinguses disconnection as the basic actuation
algorithm operated flawlessly and all the appropriate meslul mechanism. Although this operation requires an external
knew whether to disconnect or remain a part of the findbrce to remove extra modules, it is simpler and therefore
configuration. Because the dog model is a three-dimensiormabre reliable than making connections because it reduces
structure, it is impossible for all of the extra modules tth fa to letting gorather than seeking a connector and making a
away, even if the dog is suspended during disassembly. tabust connection to it.
each of the five experiments, there were two scrap modulesThe hardware prototype, Miche, proves the concept of
that disconnected, but could not fall away because thewaking shapes by disassembling. Our experiments with this
rested on top of modules that were a part of the fingbrototype demonstrate our hypothesis that making shape by
structure. On average, there were an additional 2.4 moduldisassembly is robust. These experiments have also given us
that disconnected from their neighbors, but became wedgéetsights on how to improve the system. In our future work we
in the structure when they were supposed to fall away. Bplan to develop a smaller module with enhanced the point-
rotating the structure or lightly tapping these modules, wo-point communication. Since communication is respdasib
were able to achieve the desired final configuration. for most observed failures we will re-design the system that

The twice repeated Magswitch failure in the humanoid exenables two adjacent modules to communicate via IR. In
periment demonstrates that the system is vulnerable taisertaddition, we also plan to design a better user interface and
types of connector failures. If a Magswitch which border¢o develop an automated assembly mechanism for the initial
on the goal structure fails to disconnect, the goal strectustructure.
cannot be perfectly formed. In contrast, if a Magswitch The distributed algorithms developed for controlling the
connecting two extra modules cannot release its hold, and thystem are provably correct and efficient in the space they us
consequent 2-by-1 supermodule is not physically preventeshd in the communication they require. The algorithms do
from leaving the system, the connector failure is inconsaot require the complete shape description to be trangitte
guential. If the supermodule is unable to be ejected from thhe every module. No knowledge of the initial structure is
structure, then goal formation again fails. assumed. No aspect of the self-disassembly process relies

Despite these isolated Magswitch problems, the criticain global information about the initial shape or the desired

VIl. CONCLUSION



shape of the system. The system encodes and transmits shagextension _ Type Description

information very efficiently. The amount of storage reqdire

by each module is constant. Since the running time of the
system is linear in the number of modules (or in the longest
chain of the structure) the algorithms scale nicely to large

structures that need to be sculpted.

Despite the linearity of the running times, further advance
are needed before a system comprised of thousands or
millions of modules could be successfully deployed. Withou

Self-disassembly of a humanoid

Video robot showing the GUI operating

in parallel with the actual system
Self-disassembly of a

Video suspended dog robot
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