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Abstract— We describe the design, implementation, and pro-
gramming of a set of robots that, starting from an amorphous
arrangement, can be assembled into arbitrary shapes and then
commanded to self-disassemble in an organized manner, to
obtain a goal shape. We present custom hardware, distributed
algorithms, and experimental results from hundreds of trails
which show the system successfully forming complex three-
dimensional shapes. Each of the 28 modules in the system is
implemented as a 1.8-inch autonomous cube-shaped robot able
to connect to and communicate with its immediate neighbors.
Embedded microprocessors control each module’s magnetic
connection mechanisms and infrared communication interfaces.
When assembled into a structure, the modules form a system
that can be virtually sculpted using a computer interface and
a distributed process. The group of modules collectively decide
who is on the final shape and who is not using algorithms that
minimize information transmission and storage. Finally, the
modules not in the structure disengage their magnetic couplings
and fall away under the influence of an external force, in this
case, gravity.

I. I NTRODUCTION

We present a modular robotic system namedMiche
that behaves as programmable matter (see Figure 1).
The approach to realizing programmable matter usesself-
disassemblyas the fundamental operation to achieve shape
formation. The function of self-disassembling modular
robots can be thought of as analogous to sculpting. We
start with a large block made of individual modules. The
initial structure is transformed into the desired shape by
eliminating the unnecessary modules from the structure in
a controlled fashion. Much like a sculptor would remove the
extra stone from a block of marble to reveal a statue, our
self-disassembling system eliminates modules to form the
goal structure.

Fig. 1. A self-disassembling system can transform from an initial uniform
assembly of identical modules, (a), into a more interestingand functional
assembly in (b).
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The key innovations of our work are (1) the concept of
achieving shape formation by self-disassembly; (2) a first
hardware prototype capable of self-disassembly; and (3)
a suite of provably correct distributed algorithms capable
of planning and controlling self-disassembly in an optimal
manner that minimizes information flow. The Miche sys-
tem serves as a hardware proof of concept and a testbed
for distributed algorithm development. The algorithms were
developed with the expectation that the physical size of
individual modular robots will shrink and the number of
robots in modular systems will grow. Efficient algorithms
that pass a minimal number of messages will become a
necessity as modular systems become increasingly dense.

Creating robotic systems and smart objects by self-
disassembly has one main advantage over existing ap-
proaches by self-assembly. Self-disassembling systems entail
a simple actuation mechanism (disconnection) which is gen-
erally easier, faster, and more robust than actively seeking
and making connections. The trade-off is three-fold. First,
self-disassembling systems must start from a pre-assembled
structure of modules. In our work, this block is assembled
manually, but this process can be automated using mechan-
ical fixtures. Although this process requires some additional
effort, assembling the initial block, (due to its regularity),
is easier than immediately forming the more complex goal
structure. As additional modules are brought into contact
with the initial block, the modules already present providea
rapid and reliable means of alignment. Furthermore, until a
module is aligned with its neighbors, it remains unbound
and free to continue moving. With the help of external
environmental forces, it may even be possible for unbound
modules to self-assemble an initial block of material. The
second trade-off associated with actuation by disconnection
is that external forces must be employed to remove unwanted
material from the system. Often, these forces can be found
in the surrounding environment. For our experiments, we
used gravity to pull unnecessary modules away from the
final structure. Third, unlike most self-assembling system,
self-disassembling systems, because their only method of
actuation is disconnection, cannot reconfigure themselves
without jettisoning some number of modules.

Modular robots that can self-disassemble provide a simple
and robust approach toward the goal of smart structures and
digital clay. A collection of millions of modules, if each were
small enough, could form a completely malleable building
material that could solidify and then disassemble on com-
mand. As in existing selective laser sintering systems, (which
fuse particulate matter to create rapid prototypes), a self-
disassembling robotic system would only require the user to



shake off the unused modules. A plethora of intelligent and
interactive objects could be created through this process of
organized disassembly and removal of extra material.

The applications of self-disassembling systems include
entertainment, object creation by programmable matter, 3d
printing and rapid prototyping, and all the other applica-
tions of self-assembling systems. Specific modules could
be equipped with specialized actuators or sensors. After the
self-disassembly process completes, the these actuators could
be employed for additional locomotion or manipulation.
The added flexibility of removing specific components from
the assembly ensures that our approach is especially well
suited to tasks requiring temporary supporting structures.
For example, self-disassembling material could be applied
as an active scaffolding to help heal severely broken bones
that would otherwise require the use of permanent steel
plates or pins. In addition to disassembling as the bone re-
grows, the scaffolding could provide valuable medical status
information to doctors. In such a scenario, the bloodstream
could carry away extra modules.

The first part of this paper is devoted to describing the
Miche hardware that we designed and built. Each module
is a cube whose faces are the PCBs used for the elec-
tronics and control of the system. (Although we chose
identically sized modules, the system could be adapted to
employ completely passive modules as well as modules that
were integer multiples of the fundamental unit size.) Each
module has on-board computation and power, point-to-point
IR communication with its immediate neighbors, and three
switchable permanent magnets. These magnets provide the
connection between adjacent units and have the feature of
activating or deactivating depending on their orientation.
Three small motors capable of rotating the magnets provide
the disconnection actuation in the system. We have built a
system consisting of 28 Miche modules.

The second part of this paper describes the algorithms
employed to achieve shape formation by self-disassembly.
Shape formation with Miche modules proceeds as follows.
First, an initial amorphous shape is assembled by hand (e.g.
see Figure 1(a)). The modules in this initial structure use
local communication to establish their location within a
system of coordinates. After the initial configuration has
been assembled, the user provides a goal shape for the
system. Using local communication, the group cooperates to
distribute this information so that all modules know whether
to remain as a part of the system or to extricate themselves.
Finally, the unnecessary modules disconnect from the system
and drop off to create the desired shape (e.g. see Figure 1(b).)

After describing the the hardware, algorithms, and systems
issues associated with achieving such a distributed system,
this paper presents our initial experimental results. The
system exhibits very reliable behavior. We believe this is
due to the actuation method employed for shape formation
because it does not have to solve the challenging task of
forming precise inter-module connections.

A. Related Work

Our work draws on prior and ongoing research in modular
and distributed robotics [YZR+03], [CBW02], [KKY+05],
[RV03], [CW00], [PEUC97], [UK00], [Yim], [WZBL05],
[BKGS06], [PCK+06] and self-assembling systems [Nag02],
[WG02]. Most these systems are composed of identical
modules that can connect to each other, communicate, have
some actuation capabilities, and in general are able to co-
operate to perform a task as a group. Like in these prior
systems, our modules can connect and communicate with
each other in order to perform a global task. Our connection
mechanism is novel however and has some advantages.
Previous systems use mechanical connections actuated by
shape-memory alloys (SMA) [YZR+03], [CBW02], [UK00],
or by electric motors [RV03], electromagnetic connections
[WZBL05], static permanent magnet connections [Yim] or
SMA actuated [KKY+05] or SMA springs [YMK+02],
[YKM +01]. A novel system for self-assembly and reconfig-
uration is presented by White [WZBL05] which uses fluid
flow to bind individual modules together. In [PCK+06], Pillai
et. al. simulate using thousands of mechanically passive mod-
ules to construct digital representations of three-dimensional
objects. The CHOBIE robot developed by Koseki [KMI04]
is unique in its mechanical design. The modules in the
CHOBIE system, which are also rectangular, are able to
locomote by sliding in two planes relative to one another.
Unlike the previous mechanical systems, our modules have
no protrusions (they are flat faced cubes) and therefore they
have less parts to break and are easier to assemble. Compared
to SMA and electromagnetic systems, our modules do not
use power in any of the states (they only use power for
transitions). One key advantage of a switchable magnet
connector is that the power used for actuation is almost
independent of the final connection force.

The previous systems capable of programmable matter are
focused on using actuations to change the relative position
of the modules in order to achieve their goals. In contrast,
the system discussed in this paper creates desired shapes
solely by self-disassembly. This requires a suite of novel
support algorithms for shape formation, specifically efficient
and scalable distribution of shape information across the
modules, without, for example, the need of reprogramming
the modules as in [Nag02]. The algorithms in this paper have
provable time and space complexity limits to ensure they will
gracefully scale with the miniaturization of the basic module
and increase in the number of modules in the system.

II. M ICHE HARDWARE

Figure 2 shows a Miche module prototype. Each module
contains the resources necessary for autonomous operation:
processing capabilities, actuation mechanisms, communica-
tion interfaces, and power supplies. The modules are built
from six distinct printed circuit boards that interlock to form
a rigid structure. Two groups of three circuit boards each are
soldered together to form the two halves of a cube. These
two halves then mate using two friction-based electrical
connectors so that the cubes can be easily disassembled for



Fig. 2. Each module in the system is a cube which measures 1.77inches
on each side and weighs 4.5oz. Each module is completely autonomous and
can operate for several hours under its own power.

testing and maintenance. When completely assembled, each
cubic module is 1.8 inches on a side and weighs 4.5 oz.
As shown by an open module in Figure 3, all electronic
components are surface mounted on the top side of the
boards so that when assembled into cubes, all components
reside on the inside. The only pieces of the system mounted
externally are three steel plates that form half of the magnetic
connection mechanism, presented in detail below.

A. Connection Mechanism

Individual modules bind to each other using switch-
able permanent magnet assemblies, hereafter referred to as
Magswitches. These assemblies are produced by Magswitch
Technology, Inc. [Mag]. Figure 4 shows an example
Magswitch. Three of the faces of each cubic module contain
Magswitches. Like all other components, they are mounted
on the inside of the cubes and pass through similarly sized
holes in the printed circuit boards. The other three cube faces
of each cube are covered by steel plates. The steel is cold
rolled A336/1008 that is 0.033 inches thick. When multiple
cubes are assembled into a structure, the Magswitches always
attach to the steel plates of a neighboring cube, not one of the
other cube’s Magswitches. As a result, the modules can only
attract one another. They do not repel but, instead, depend
upon gravity or user intervention to clear unused modules
from any final structure. A single Magswitch connected
to a neighbor’s steel plate can support over 4.5 lbs.—the
combined weight of 17 other modules hanging vertically.

The Magswitch assemblies control a magnetic field by
changing the relative orientation of two permanent disc
magnets. The magnet with the keyway shown in the assembly
in Figure 4 can rotate freely with respect to the fixed
magnet that sits below it in the structure. Depending on the
two magnets’ relative orientations, the Magswitch is either

Fig. 4. Each Magswitch consists of two permanent magnets stacked on
top of each other inside of a metal housing. The bottom magnetis fixed
while the top one contains a keyway and is free to rotate. As the top magnet
is rotated through 180o, the entire device switches from on to off or vice
versa.

activated and attracts other ferromagnetic materials, or it is
deactivated and releases it hold. The Magswitches do not
weaken with time because the south poles, (and north poles),
of the magnets in each Magswitch are only brought into close
proximity when the Magswitch is on and attached to the
steel face of a neighboring cube. As a result, the combined
magnetic flux has a “low resistance” path from north pole
to south. The advantage of using Magswitches for activation
is that power is only consumed while changing the state of
the Magswitch. Once a Magswitch is on or off, it remains in
that state indefinitely. This is invaluable for the battery life
of the modules.

A miniature pager-sized motor with an integrated planetary
gear box drives each Magswitch. These motors have a stall
torque of 0.28oz-in [Sol06]. A 17-thread-per-inch worm gear
is glued to the motor’s output shaft. This worm gear turns
a 30-tooth spur gear which has a key that matches the
keyway of the Magswitch shown in Figure 4. The entire
motor, worm gear, spur gear, and Magswitch assembly is
illustrated in Figure 5. When driven with 4.1V, the voltage
of a freshly charged lithium-polymer battery, the motor
requires approximately 1.3 seconds to switch a deactivated
Magswitch on and back off again.

Fig. 5. A worm gear attached to the output shaft of a miniatureDC motor
turns a spur gear that mates with the keyway in the Magswitch.In the figure,
the Magswitch is obscured by the spur gear, and the removed top cover of
the entire assembly is shown on the left.

The motor driver circuit consists of a single MOSFET. As
a result, the motor can only turn in one direction, but three
additional MOSFETs, which would be needed to run the
motor in both directions, are eliminated. The disadvantageto
only being able to rotate the Magswitches in one direction is
that a motor may stall while activating its Magswitch leaving
the Magswitch stranded in a partially activated configuration.
(It is not uncommon for a motor to stall if its Magswitch
is not in direct contact with a neighboring module’s steel
place or some other ferromagnetic material.) If the motor
could reverse directions, it would at least be able to return



Fig. 3. An open module shows all of its major components. Eachcontains two microprocessors, connection mechanisms, infrared emitters and detectors,
an accelerometer, a tilt switch, and batteries. Each cube istotally self-sufficient.

its Magswitch to the deactivated state. An analog Hall Effect
sensor is used to detect the state of each Magswitch. The
Hall Effect sensor is placed such that its axis of sensitivity is
aligned with the magnetic field produced by the Magswitch.
As the Magswitch rotates, the Hall Effect sensor produces a
voltage that approximates a sine wave.

B. Processors

Each module contains two microprocessors that perform
different tasks. The primary microprocessor is a 32-bit ARM
processor produced by Philips. It is responsible for all of
the high-level disassembly algorithms. The second processor
is an 8-bit programmable system on a chip (PSoC) that is
manufactured by Cypress Microsystems. The PSoC handles
the low-level functions that would otherwise occupy the
ARM. In particular, it implements six serial receive ports,
one for each face of the module. This allows a single module
to receive messages from all its neighbors simultaneously.
The ARM and PSoC communicate using the I2C protocol
[Sem00].

C. Communication Interface

Communication between modules is performed using in-
frared light. Each of the six cube faces contains an infrared
LED and an infrared sensitive photodiode. Together, these al-
low bidirectional communication between neighboring cubes
at 9600 bits per second (bps). While higher bit rates were
achievable, 9600bps proved adequate.

Infrared communication has several advantages over other
alternatives such as direct electrical contacts. First, anin-

frared based system does not require that the faces of neigh-
boring cubes be completely flush. In an assembly of many
modules, this is a legitimate concern because imperfections
in the manufacturing process produce cubes that are not
perfectly square nor exactly the same size. Electrical contacts
would also be disadvantageous because they may short out
on the steel plates that cover three of the six cube faces.

In order to simplify the design of the circuit boards which
compose the faces of the modules, the infrared LED and
photodiode were not always placed in the center of each
face. This, and the fact that Magswitches must always contact
steel plates, dictates that every module has only one valid
orientation in a composite structure. Otherwise, the LEDs
and photodiodes of neighboring cubes would not align.
However, because any self-disassembling structure must be
assembled by manually, this restriction does not affect the
functionality of the system.

The infrared LED and photodiode have both a limited
range and a limited field of view. Like all of the electrical
components, the LED and photodiode are mounted on the
inside faces of the modules, and they point outward through
holes in the circuit boards. In order to prevent these holes
from further restricting the field of view of the emitters or
receivers, they are countersunk from the back (bottom) side
of the boards.

D. Sensing

Each module is able to detect its absolute three-
dimensional orientation by using a two-axis accelerometer



and a binary tilt switch that are connected to the ARM micro-
processor. The accelerometer returns two PWM signals that
correspond to the acceleration that each axis is experiencing.
The period of these signals is fixed, but the percentage of one
period that the signal is on is proportional to acceleration.
The ARM microprocessor measures the pulse width of the
two signals to obtain an estimate of the cube’s orientation.A
tilt switch is needed to disambiguate the data produced by the
two-axis accelerometer because the cubes exist and operate
in a three-dimensional environment. (The specific two-axis
accelerometer used in Miche was chosen for its increased
durability in comparison to most three-axis accelerometers.)
Like the accelerometer, the tilt switch was also chosen for its
durability. Instead of a typical mercury-filled glass cylinder,
each tilt switch uses a small metal ball bearing encased
in a metal cylinder. While the tilt switch only tells the
microprocessor whether the module is oriented roughly up
or down, this information, combined with the more precise
data from the accelerometer, is enough to determine which
side of a module is facing down.

E. Power

Each module is equipped with two rechargeable lithium-
polymer batteries connected in parallel. These batteries sup-
ply power to the module’s electronics and motors. They
provide 3.7V nominally and have a combined capacity of
340mAh. If the batteries are fully charged and the module
is continuously transmitting messages on each face but not
running its motors, the usable battery life is over six hours.
The batteries drive the motors directly, but two voltage
regulators provide power for the electronics. One produces
3.3V which is used by all of the components. The other
regulator produces 1.8V which is only used by the core of
the ARM microprocessor.

The modules can be recharged without removing the
batteries. Each module contains an integrated circuit that
manages the process. The electrical connection to recharge
the batteries is provided through two of the metal faces that
adorn the outside of the cubes. Large areas of solder mask are
missing on the bottom (outside) of two of the printed circuit
boards that form the faces of the cubes in order to electrically
connect the steel plates to the circuit. To achieve a reliable
connection, the plates are affixed with conductive epoxy. To
recharge the batteries, the modules are set in a 28 inch long
trough whose metal sides supply a potential difference of
5V. The trough can recharge 15 modules simultaneously.
Current to recharge each module’s batteries flows from the
sides of the trough, through the metal faces and conductive
epoxy to the solder mask-free contacts on the back of the
printed circuit boards. The integrated circuit responsible for
managing the charging process automatically detects when a
charging voltage is present. Therefore, starting or stopping
the charging process is achieved by simply placing the
modules in, or removing the modules from, the charging
trough.

III. L OW-LEVEL COMMUNICATION AND CONTROL

To support the algorithms that allow our system of mod-
ules to disassemble, we have implemented a series of low-
level functions that control the hardware in each module.
These routines place an abstraction barrier between the
localization, shape distribution, and disassembly algorithms
and the complex hardware contained in each module. This
separation facilitates the rapid implementation and modifi-
cation of the high-level concepts which are responsible for
the system’s visible behavior. The high-level algorithms do
not have to contend with the specifics of basic tasks such as
exchanging messages or activating a Magswitch.

Once a module has the ability to transmit and receive
messages, the low-level operation reduces to the simple
process illustrated in Figure 6. After initializing, a module
loops forever, simply receiving and transmitting messages
to its neighbors. The interesting behavior responsible for
the system’s self-disassembly is governed by how the high-
level algorithms for shape aggregation respond to received
messages.

Fig. 6. The message processing loop executing on each moduleis simple.
First, modules initialize all their peripherals. Then, they loop infinitely,
receiving and sending inter-module messages. How a module changes
its internal state in response to received messages and whatmessages it
transmits in return, dictate the system’s high-level abilities.

All inter-module communications utilize the IR LED and
photodiode pairs that exist on each of the module’s six faces.
The process of transmitting a message involves several steps.
First, the message body is constructed. Then, a checksum
produced by a cyclic redundancy check (CRC) is appended
to the message. Next, the ARM processor sends aSET TX
CHANNEL command over the I2C interface directing the
PSoC to activate the RS-232 transmission multiplexer so
that the message is directed to the correct face. After the
PSoC acknowledges that it received this command, the ARM
sends the message over the RS-232 interface, through the



PSoC, and to the correct IR LED. Finally, once all bits have
been transmitted, the ARM once again uses an I2C bus to
deactivate the transmission multiplexer. Messages consist of
ASCII characters. They start and end with a special character
and have the format shown in Figure 7.

CRC
check sum

cmd. terminatorfield delimiter

& \rX X X &

optional type-specific fieldsmsg. type

&&# sequence
number

start character

transmit face

one byte

Fig. 7. Messages are composed of a start character, some number of
alphanumeric data fields separated by ampersands, a hexadecimal checksum,
and a message terminator.

Receiving messages from neighboring cubes also requires
several steps. First, the ARM must use the I2C bus to
configure the digital-to-analog converter that drives the non-
inverting inputs of a set of comparators attached to the IR
photodiodes. (The comparators use this threshold value to
convert the analog output of each photodiode to a digital
signal.) Once the DAC is configured, it will continue to sup-
ply a constant voltage. As a result, this step is only necessary
when a module turns on. Assuming that the threshold voltage
is reasonable, the ARM proceeds to query the PSoC receive
buffers for the presence of any messages using theGET
RX STATUS I2C command. If some buffer contains a valid
message, the ARM issues aREAD RX BUFFER command
to retrieve the message. After the PSoC transfers a message
to the ARM, it automatically empties the buffer that had
been holding the message. Doing so allows the buffer to once
again begin filling with the next message that is received on
the specified face.

The most important inter-module message types and ab-
breviations are

• acknowledge (ACK)
• ping (detect neighbors) (PNG)
• localize (LOC)
• reflection (inform system of module’s existence) (REF)
• include in final structure (INC)
• disassemble (DAS)
• disconnect request for a specific Magswitch (DRQ)
• disconnect all Magswitches (DCA)

IV. D ISTRIBUTED CONTROL AND PLANNING

These basic inter-module messages are used to drive
the high-level control algorithm for self-disassembly which
is divided in four phases and shown in Figure 8. Each
of the four phases of self-disassembly is dependent on a
distributed, localized message passing algorithm executing
on each module.

The first phase, neighbor discovery, commences after the
modules are reset. Modules are added manually to the initial
assembly one at a time. During this phase, modules use low-
level messages to detect any neighbors in close proximity
and attempt to establish mechanical and communication
links. When a neighbor module is detected on a face, the
Magswitch on that face is commanded to rotate to theon

Fig. 8. The entire self-disassembly process consists of four phases:
neighbor discovery, localization, shape distribution, and disassembly.

position. At the end of the phase all the modules in the
structure are connected as solid block.

During the localization phase, which follows neighbor dis-
covery, modules discover their positions within the structure
and transmit their positions back to a MATLAB program
(see Figure 9) running on the user’s desktop computer. Lo-
calization messages are used to efficiently compute relative
coordinates for each module in the physical assembly. Once
each module has transmitted its position to the user’s com-
puter, the MATLAB program can form and display a model
of the system using a GUI. Using this model, the desired final
configuration of modules can be virtually sculpted. Using the
GUI, the user selects whether each module is included or
excluded from the final shape. After this sculpting process
is complete, the program generates a sequence of shape
distribution messages that is sent to the modules during
phase three. During this next shape distribution phase, the
modules propagate the inclusion messages generated by the
GUI. The fourth, and final, phase is disassembly. During
the disassembly phase the modules not in the final shape
disconnect from the system to reveal the shape the user
sculpted using the GUI. The entire self-disassembly process
showing the GUI and the modular structure side-by-side can
be seen in Extension 1.

One important goal for the self-disassembly algorithms
was to compress required shape description information per
module and to minimize the required number of point-to-
point messages. Our decentralized approach is in contrast to
the centralized approach where the entire shape description
is given to each module using global messages that can
flood the entire structure. The centralized approach does not
scale with respect to the number of modules in the structure
and flooding becomes infeasible as the number of modules
in the system grows. When flooding the entire system



with global information, the communication burden on each
module rises in proportion to the total number of modules.
Additional inter-module communication requires increased
data storage and battery capacity. Furthermore, as the size
of the system grows, the modules will be forced to shrink,
and the amount of processing ability, storage capacity, and
electrical power available to each will diminish. Efficient,
distributed algorithms that only require local knowledge of
surrounding modules are therefore crucial to a large modular
system’s viability because distributed algorithms minimize
the processing, storage, and communication demands placed
on each module.

Fig. 9. A graphical user interface (GUI) is used to virtuallysculpt the
initial configuration of modules into a more interesting configuration. Here,
modules that will be included in the final structure are shownin red, and
those that will not be included are shown in blue. The list boxin the lower
right displays the sequence of messages that will be transmitted to the root
module (the darkest red cube) for distribution in the structure.

A. Neighbor Discovery Algorithm

The Miche system is initialized by creating a structure.
The modules are put together1 and they connect to one
another using a neighbor discovery algorithm.

During neighbor discovery, every module uses its IR LEDs
and photodiodes to detect and connect to its neighbors. The
pseudocode for the neighbor discovery phase is provided
in Algorithm 1. On lines 3–5, every module begins by
transmitting ping messages on all faces. The third argument,
(infinity), to the TxEnqueue function on line 4 ensures
that the ping, (PNG), messages are transmitted forever or
until a TxPurqueQueuecommand is issued. The algorithm
then loops through the pseudocode contained by lines 8–
22 until a localization, (LOC), message is received. Once

1Modules are assembled manually in our current implementation, al-
though an automated assembly mechanism is possible.

a localization message is received on any face, the module
halts the neighbor discovery process and proceeds to localize
itself and its neighbors. The code inside of the loop first
checks for new messages received on any of the six faces,
(lines 8–9). Line 11 check whether a new message was
received on a face that has a Magswitch. If any type of
message was received on a face that has a Magswitch, line 12
activates that Magswitch.

Lines 15–21 process incoming messages based on their
type. If a module receives an acknowledgment on any face,
it stops transmitting ping messages on that face because
any further ping messages would be redundant (lines 15–
16). It is also possible that a module receives its neighbor’s
ping message before an acknowledge message. In this case,
(lines 17-18), the module transmits one acknowledgment
message on the receiving face in response. Finally, if a
localization message is received, theLOC-Receivedvariable
is set, (lines 19-20), and the neighbor discovery process ends
with all message transmission queues being purged (lines 25–
27).

The range of the IR system is limited to approximately
0.25 inches (see Section II). This range has prevented false
detections in all observed cases. Because neighbor discovery
occurs independently on each cube, it only requiresO(1)
time for the phase to complete. At the end of the neighbor
discovery phase, the modules have formed a solid structure,
and they are ready for localization.

B. Localization Algorithm

The localization phase ensures that each module discovers
its absolute three–dimensional coordinates in the system.
Localization gives each unit a sense of its place in the
structure and of its local neighborhood, in the absence of a
global view of the entire structure. No module in the system
has such a global view and the structure formation algorithm
does not rely on it. In our implementation we use the GUI
as a way of visualizing and sculpting the structure. Because
of this, localized modules inform the GUI of their placement
which, in turn builds a global image of what the system.

The localization process originates from a root node.
A module in the system gets designated as root. In our
implementation the root module has a wireless Bluetooth
communication link to the world. The user can initiate the
localization process by sending a message from the GUI to
the root node. The coordinates of the root node are(0,0,0)
(see Figure 10(a)).

Upon receiving a localization message, each module can
compute its coordinates and the coordinates of all its immedi-
ate neighbors. The coordinates are tagged onto a forwarded
localization message as shown in Figure 10. This process
continues as a breadth-first process until all the modules
are localized. Figures 10(c-f) show localization messages,
(represented by single arrows), propagating through the the
3-by-3 structure.

Algorithm 2 illustrates with pseudocode the algorithm
that each module uses to localize. The algorithm operates
by looping through lines 5–36 check each cube face for
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Fig. 10. Localization messages, represented by the single width arrows, propagate from one module to the next and carry the location of the receiving
module. Once a module is localized, it transmits a reflectionmessage, represented by double arrow, to its parent and it eventually propagates back to the
root module.

localization, (LOC), messages. When the first localization
message is received, line 8 sets the module’s parent to
the face on which the localization messages was received.
Lines 9–10 extract and store the module’s assigned position
in two different variables,Location and L. Lines 13–33
then loop through each of the modules six faces sending
acknowledgment, (ACK), and reflection, (REF), messages to
the module’s parent and new localization messages to each
of the module’s five potential neighbors. Lines 18–30 are
responsible for computing each neighbor’s position given
the direction in which the neighbor lies. Line 31 transmits
the new localization message to each potential neighbor 100
times. While not highlighted by pseudocode, the acknowl-
edgment messages transmitted in line 15 cause the receiving
module to stop transmitting localization messages in order
to conserve power and processing resources. To show that
the localization algorithm operates correctly, we first show
that each module receives a localization message. Then we
show that these messages all contain the correct position
information. Finally, we show that the algorithm terminates.

In our implementation we visualize the localized structure
in the GUI. Therefore, once a module is localized, it needs
some way of informing the GUI that it exists. To do so, every
module transmits a reflection message to the GUI after it is
localized. Specifically, the modules only transmit the reflec-
tion messages on their parent faces. A module’s parent face
is defined as the first face on which it received a localization
message. Figure 10 denotes each module’s parent face using

a double arrow. These pointers always point from a module
to its parent. The figure illustrates the fact that a module’s
parent pointer always points toward the neighboring module
from which it first received a localization message.

In addition to initiating the transmission of a reflection
message on its parent face, each module also forwards any
reflection messages that it receives from its neighbors on to
its parent face. Eventually, all reflection messages propagate
back to the root module and from there to the GUI. Such
a process, as will be shown later in this section, guarantees
that the GUI receives a reflection message from each module
in the structure. In other words, starting from any module in
Figure 10(f), one can trace a path back to the root module
by following the modules’ parent pointers. Algorithm 3
contains the pseudocode which forwards reflection messages
to a module’s parent. This pseudocode, combined with the
localization pseudocode in Algorithm 2, demonstrates that
all reflection messages eventually reach the root module.

Theorem 1:Assuming that inter-module communication
is always reliable, the localization algorithm ensures that
each module determines its position in the structure in a
finite amount of time.

Proof: By assumption, we know that the root module
receives a localization message because we use the GUI to
send that message. Because the root retransmits the message
to its neighbors, we know that all of the root’s neighbors
receive a localization message. The neighbors also retransmit
the message. By induction, afterk iterations, all modules



Algorithm 1 The neighbor discovery algorithm broadcasts
ping messages on each face until it receives an acknowledg-
ment at which point it stops broadcasting ping messages on
the receiving face and activates the face’s Magswitch.

1: procedure DISCOVERNEIGHBORS( )
2: LOC-Received← FALSE
3: for face← 1 to 6 do
4: TxEnqueue(face,PNG,∞)
5: end for
6:

7: repeat
8: for face← 1 to 6 do
9: msg←RxDequeue(face)

10:

11: if (msg6= /0) AND (HasMagSw( f ace)) then
12: Activate(MagSwitchface)
13: end if
14:

15: if MsgType(msg) = ACK then
16: TxPurgeQueue(face)
17: else if MsgType(msg) = PNG then
18: TxEnqueue(face,ACK,1)
19: else if MsgType(msg) = LOC then
20: LOC-Received← TRUE
21: end if
22: end for
23: until LOC-Received
24:

25: for face← 1 to 6 do
26: TxPurgeQueue(face)
27: end for
28: end procedure

which are at mostk units away from the root along any
contiguous path are localized.

Now we show that every localization message received
by any module correctly identifies the module’s position.
(In reality, we only need to show that the first message
is correct because the pseudocode ignores all localization
messages after the first.) Again, by assumption, we know
that the root is correctly localized because we use the
GUI to tell the root module its position. Because of the
symmetric and independent way in which the coordinates
of each localization message are modified as the messages
propagates, (incrementing the x–coordinate when a message
is passed to a module’s right and decrementing the x–
coordinate when a message is passed to a module’s left, etc.),
no matter which path a localization message follows from the
root to any other module, the final coordinates contained in
the message when it reaches that module will be identical.
Therefore, each localization message received by any module
will contain the same set of coordinates and the module will
localize correctly.

Finally, the localization algorithm terminates because each
module only responds to the first localization message that

Algorithm 2 The localization algorithm ensures that every
module determines its position and that each informs the
GUI in turn.

1: procedure LOCALIZE( )
2: Localized← FALSE
3:

4: while Localized= FALSE do
5: for face← 1 to 6 do
6: msg←RxDequeue(face)
7: if MsgType(msg) = LOC then
8: Parent← face
9: L← ParseLocation(msg)

10: Location← L
11: Localized← TRUE
12:

13: for i← 1 to 6 do
14: if i = Parent then
15: TxEnqueue(Parent,ACK,1)
16: TxEnqueue(Parent,REF,100)
17: else
18: if i = 1 then
19: L

′
= L+(1,0,0)

20: else if i = 2 then
21: L

′
= L+(0,1,0)

22: else if i = 3 then
23: L

′
= L+(0,0,−1)

24: else if i = 4 then
25: L

′
= L+(0,−1,0)

26: else if i = 5 then
27: L

′
= L+(0,0,1)

28: else if i = 6 then
29: L

′
= L+(−1,0,0)

30: end if
31: TxEnqueue(i,LOCL←L′ ,100)
32: end if
33: end for
34: return
35: end if
36: end for
37: end while
38: end procedure

it receives. Once all modules in the structure have received
a localization message, no additional localization messages
will be sent.

Theorem 2:All reflection messages reach the root mod-
ule.

Proof:
After localization, some neighbor of the root must have a

valid parent pointer that points to the root. (If this were not
the case, localization messages could not have propagated
to any other module in the system.) For the remainder of
this proof, a valid parent pointer is one which points to a
cube which already has a valid parent pointer. The root’s
neighbors, like all other modules, do not transmit localization
messages to their neighbors until they have a valid parent.



As a result, any localization message that another module
receives originates from a module with a valid parent. By
induction, all parent pointers must be valid, and they must
eventually lead to the root.

Algorithm 3 Once localized, each module forwards all
reflection messages received from its neighbors on to its
parent. This ensures that all reflection messages eventually
reach the root module.

1: procedure HANDLE REF MESSAGE(msg, face)
2: if Localized= FALSE then
3: return
4: end if
5:

6: TxEnqueue(face,ACK,1)
7: TxEnqueue(Parent,msg,100)
8: end procedure

There is no need to explicitly terminate the localization
process because modules that do not receive localization and
inclusion messages assume that they are not a part of the final
structure, and they disconnect by default when they receive
disconnection messages.

In order to analyze the running time of the localization
algorithm, we assume an upper bound on the amount of time
required by a module to process any messages that it has
received and produce outgoing messages in response. We
denote this upper limit on a module’s processing timet.

If there aren modules in a system, the running time of the
localization algorithm isO(nt) because the modules could
form ann–unit chain, and each module could require timet
to forward the localization message. Therefore, the time for
the localization messages to reach the end of the chain is
O(nt). More generally, the time to complete localization in
an arbitrary structure with the longest chain of lengthm is
O(mt).

We cannot claim anO(mt) bound on the time it takes for
reflection messages to return to the root because the chain of
parent pointers may be longer thanm, the longest of the set
of shortest paths from the root module to any other. Some
chain of modules may process localization messages quickly,
leading to a situation where a module that isk units away
from the root receives its first localization message from a
module that isk+ 1 units away from the root. In such a
situation, the reflection message would need to travel through
at leastk other modules before reaching the root.

C. Inclusion Message Generation Algorithm

In order to transform an initial configuration of modules
into an arbitrary shape, the desired shape needs to be
communicated to the system. We developed an algorithm
that enables us to communicate the structure to the system
without transmitting the entire shape to each module in the
system. Instead, for a given shape specified by a user, an
algorithm determines a sequence ofinclusion messagesthat
are automatically synthesized based on the desired shape and
then communicated to the modules that end up being in the

final shape. In our implementation the final shape is selected
manually by the human user via the GUI. The root node
is always part of the final structure and therefore contains
a path to every node in the final structure. (Note: a simple
algorithm modification exists which relaxes this constraint
on the root module.)

Message generation can be divided into the three steps
that are seen in Algorithm 4. First, the algorithm constructs a
graph that contains information about the assembled structure
of modules. Second, the algorithm performs a breadth-first
search (BFS) on the graph to find the shortest distance
between the root module and all others. Finally, the al-
gorithm employs a depth-first search to traverse the graph
and produce a set of inclusion messages. Such complexity
is necessary for several reasons. First, one cannot assume
that the initial structure is a regular or constant shape, so
inclusion messages cannot follow any standard path through
the modules from one use of the system to the next. Second,
the modules do not have a concept of the entire structure,
so they alone cannot be responsible for managing the entire
routing process. Finally, as the size of the system expands,
it is impractical to transmit detailed routing informationas
part of each message because the amount of information will
grow quadratically with the number of modules, (one factor
for the additional number of messages and another factor for
the additional information contained in each message).

Algorithm 4 The message generation algorithm uses a BFS
to find the shortest path from the root to all modules and
then uses a DFS to generate the sequence of messages to be
transmitted.

1: procedure GENERATE INC MESSAGES( )
2: Construct graph,G, with a vertex for each module

and an edge for each viable communication interface in
final structure

3: Construct a new graph of shortest paths,G′, by
performing a BFS onG to find shortest path from the
root to all other modules

4: Perform DFS onG′ to determine inclusion message
sequence, sending message to modules according to the
order in which they were first encountered during the
DFS

5: end procedure

The first step in generating the inclusion messages is to
generate a graph,G(v,e), in which every module of the
final configuration is a vertex. Then the algorithm adds
edges between vertices whose corresponding modules have
touching faces. An example is shown in Figure 11. Part (a) of
the figure shows the shaded modules that should be included
in G. Figure 11(b) shows the first step in the construction
of G: vertices have been added for every module that is
a part of the final structure. Figure 11(c) showsG once
complete: edges have been added between all nodes whose
corresponding modules are neighbors. This construction of
G is performed by line 2 of Algorithm 4.

After the final configuration of the system is modeled,
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Fig. 11. The desired final configuration of a structure of 9 modules is shown in (a) where shaded cubes represent modules that should be included in
the final structure. As shown in (b), the first step in generating a sequence of inclusion messages is to construct a graph which contains a vertex for every
module in the final structure. Edges, inserted in (c), represent the face that modules are neighbors.

the time to constructG is O(n), wheren is the number of
modules that will be a part of the final structure. For each
of the n modules, the algorithm must insert up to six edges
in G, one for each neighbor that is also included.

After the graph,G, of modules in the final structure is
determined, the algorithm performs a BFS onG to determine
the shortest path between the root vertex and all other
vertices, (line 3). A BFS produces the shortest paths because
all paths have unit length [CLRS01]. The BFS modifiesG,
now referred to asG′ so that it becomes a breadth-first
tree. To produceG′, any edge inG that is not part of a
shortest path from the root module to any other module is
eliminated. We want to find the shortest paths between the
root and all other nodes because these paths are the sequence
of modules that the inclusion messages should follow. If each
inclusion message follows the shortest path between the root
and its destination module, the shape distribution algorithm,
discussed in Section IV-D, will be as efficient as possible.

Figure 12 shows how the initialG is transformed into
a breadth-first tree,G′ by the BFS. The edge between the
modules at positions(0,−1,0) and(1,−1,0) is eliminated in
the breadth-first tree because moving from the root,(0,0,0),
to the module at(1,0,0) and then to the module at(1,−1,0)
provides an equally short path from the root to the module
located at (1,-1,0) as following the path through(0,−1,0).

The typical BFS algorithm executes inO(V +E) whereV
is the number of vertices andE is the number of edge in the
graph [CLRS01]. In our system, the number of edges is never
more than six times the number of vertices because each
module has only six faces. Therefore, the running time of
the BFS isO(n), wheren is the number of modules included
in the final structure.

Once the message generation algorithm has constructed
a breadth-first tree,G′, of all modules that are a part of
the final structure, it performs a DFS onG′ starting at
the root to determine the order in which the modules will
be notified that they are a part of the final structure. This
is illustrated by line 4 of the algorithm. BecauseG′ is
already a tree, no additional edges are removed by the DFS.

(a)

(1,-2,0)

(0,0,0)

(1,-1,0)

(1,0,0)
(2,0,0)

(0,-1,0)

Initial G:

(b)

(1,-2,0)

(0,0,0)

(1,-1,0)

(1,0,0)
(2,0,0)

(0,-1,0)

Result of BFS:

Fig. 12. Performing a breadth-first search onG, the initial adjacency graph
in (a) produces the breadth-first tree,G′, shown in (b). The search eliminates
any edge which is not a part of the shortest path from the root module to
any other.

Instead, as the DFS progresses, it generates an inclusion
message for each module as it is encountered for the first
time. Table IV-C shows one possible order in which the
messages are generated from the breadth-first tree shown in
Figure 12(b). The contents of these messages and the way
they are distributed is addressed in Section IV-D.

TABLE I

THE INCLUSION MESSAGE FOR A MODULE IS GENERATED THE FIRST

TIME A DFSENCOUNTERS THAT MODULE IN THE BREADTH-FIRST TREE,

G′ . THIS ORDERING OF INCLUSION MESSAGES WAS GENERATED USING

THE BREADTH-FIRST TREE INFIGURE 12(B).

Order Module encountered

1 (0,0,0)
2 (1,0,0)
3 (2,0,0)
4 (1,−1,0)
5 (1,−2,0)
6 (0,−1,0)

The running time of the DFS algorithm when applied to an
arbitrary graph isΘ(V +E) [CLRS01]. As discussed above,
we can refine this bound toΘ(n), (wheren is the number
of modules in the final structure), because no vertex has



more than six edges. The entire message generation process
completes inO(n) time because each step of the algorithm,
(constructingG, performing the BFS, and walking down the
tree using the DFS) requiresO(n) time.

D. Shape Distribution Algorithm

The set of inclusion messages computed in the previous
step is distributed automatically and efficiently in the Miche
system. Initially, all modules assume that they are not a part
of the final structure. Upon receiving an inclusion message,
each module learns that it is in the final structure.

Each inclusion message carries two important pieces of
information: a hop count and a branch direction. As the
inclusion messages are distributed by the structure, a virtual
chain of inclusion pointers is formed. The hop count field
of each inclusion message dictates how far down this chain
each message should travel. Once the message has reached
the specified depth in the chain, it extends the chain by
including the module specified by the branch direction. Such
an algorithm avoids encoding the detailed path that each
inclusion message much follow, and it also avoids flooding
the entire system with a number of inclusion messages equal
to the number of modules in the final structure. This scheme
also has two advantages: each module must only store a
constant amount of information (the branch direction), and
the size of the inclusion messages remains constant as the
size of the system expands. Algorithm 5 shows this algorithm
implemented in pseudocode.

The algorithm operates as follows. It begins in lines 2–3
by assuming that the module is not included in the structure
and that the module has no inclusion chain pointer. It then
loops, checking each face for new messages, (lines 7–8),
until a disassemble, (DAS), message is received. When a
disassembly message is received, the algorithm transmits an
acknowledgment, (ACK), which causes the module which
transmitted the disassemble message to cease transmitting
additional disassembly messages. At this point, the algorithm
also sets theDAS-Receivedvariable so that the shape distri-
bution algorithm terminates.

When the algorithm receives an inclusion (INC) message,
it parses the message for the hop count, (hc), and branch
direction, (bd), fields, (lines 15–16). Then, the algorithm
performs one of three actions depending on the hop count.
The first option, listed on line 18, occurs when the hop count
of the received message is zero. This is an indication that
the inclusion message was originally destined to include this
module. As a result, the module now realizes that it is a
part of the structure, (line 19), and transmits a reflection
message, (line 20), back to the GUI. (Like the reflection
messages transmitted in response to localization messages, it
follows a chain of parent pointers to reach the root module.)
The reflection message informs the GUI that the module was
successfully notified of its status in the final structure.

The second case, presented on line 21, occurs when the
hop count of the incoming message is one. This signals
that one of the module’s neighbors is the final destination
of the message. The module determines which neighbor is

Algorithm 5 The shape distribution algorithm checks
whether the hop count of the inclusion message is zero. If
it is, the module assumes that it is a part of the structure.
Otherwise, the hop count is decremented and the message is
forwarded along the inclusion chain.

1: procedure DISTRIBUTE SHAPE( )
2: Included← FALSE
3: INC-Chain-Ptr← /0
4: DAS-Received← FALSE
5:

6: repeat
7: for face← 1 to 6 do
8: msg←RxDequeue(face)
9: if MsgType(msg) = DAS then

10: TxEnqueue(face,ACK,1)
11: DAS-Received← TRUE
12: else if MsgType(msg) = INC then
13: TxEnqueue(face,ACK,1)
14:

15: hc← ParseHopCount(msg)
16: bd← ParseBranchDirection(msg)
17:

18: if hc= 0 then
19: Included← TRUE
20: TxEnqueue(face,REF,100)
21: else if hc= 1 then
22: TxEnqueue(bd, INChc←0,100)
23: INC-Chain-Ptr← bd
24: else
25: TxEn-

queue(INC-Chain-Ptr, INChc←(hc−1),100)
26: end if
27:

28: end if
29: end for
30: until DAS-Received
31: end procedure

the final destination of the message by examining the branch
direction field of the inclusion message. The branch direction
field contains a number corresponding to one of the module’s
faces. It is this face that touches the module that is the final
destination of the inclusion message. Therefore, the branch
direction field indicates in which direction the inclusion
message should be forwarded. In line 22, the algorithm
forwards a modified inclusion message whose hop count is
zero to the neighbor specified by the branch direction field.
In addition, as shown in line 23, the module updates its
inclusion chain pointer to reflect where to forward the next
inclusion message.

The third and final action is prompted by the receipt of an
inclusion message in which the hop count is greater than or
equal to two, (line 24). In this scenario, the module should
have already received at least two inclusion messages: one
including the module itself, and another including one of



its neighbors and assigning a valid direction to its inclusion
chain pointer. When a module receives such a message, it
decrements the message’s hop count and forwards it along
in the direction of the module’s inclusion chain pointer as
shown on line 25.

Figure 13(a-d) illustrates the evolution of an inclusion
message as it is forwarded from the root module,(0,0,0),
to the next module that should be included in the structure
(1,−2,0). In the figure, the message is represented by the
straight arrow. One can observe the hop count decreasing
as the message passes farther down the existing inclusion
pointer chain, which is represented by the arced arrows.
When the message reaches the neighbor of new module in
Figure 13(c), it causes that module,(1,−1,0), to update its
inclusion chain pointer. The result is seen in Figure 13(d).

Hops = 3
Branch = Down

(a)

(1,-2,0)

Hops = 2
Branch = Down

(b)

(1,-2,0)

Hops = 0
Branch = Down

(d)

(1,-2,0)

Hops = 1
Branch = Down

(c)

(1,-2,0)

(0,0,0) (1,0,0)
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Fig. 13. An inclusion message, represented by the straight arrow, progresses
through a number of modules that, as denoted by their shading, have already
been included in the structure. As the message propagates, it follows the
arced inclusion chain pointers until it reaches the module at position (1,-
1,0) shown in (c). At this point, the branch direction (down)directs the
module to forward the message to its downward neighbor and update its
own inclusion chain pointer.

The progression of several inclusion messages that are
destined for different modules is pictured in Figure 14.
In this structure, modules with addresses(0,0,0), (1,0,0),
(1,−1,0), (0,−1,0), (2,0,0), and(1,−2,0) are supposed to
be included in the final structure. The six inclusion messages
needed to notify the six modules of their destiny are injected
into the system at the root module,(0,0,0). From there, they
propagate to their destination modules, which are shaded
after they know that they are supposed to be a part of the
final structure.

Theorem 3:The shape distribution process ensures that
every module that should be included in the final structure
receives an inclusion message.

Proof: To show that the shape distribution algorithm
operates correctly, we need to show that every module in the
final structure receives an inclusion message. Additionally,
we need to show that modules not destined to be a part of
the final structure do not receive inclusion messages.

Based on the pseudocode in Algorithm 5 and the ex-
planation of the pseudocode, a module forwards inclusion
messages properly if the module’s inclusion chain pointer is
configured correctly. This pointer is configured correctly if
the module receives an inclusion message destined for one
of its immediate neighbors before it receives an inclusion
message destined for any module farther away from the
root. In fact, this is exactly what happens because the DFS
generates an inclusion message thefirst time that it encoun-
ters each module. The inclusion messages for modules past
the current one are generated later. As a result, a module
will always have a valid inclusion chain pointer before it
needs to forward inclusion messages to modules other than
its neighbors. This means that the inclusion messages are
always forwarded correctly and that each module that should
receive an inclusion message does.

Now that we know that every module in the final structure
receives an inclusion message, it is easy to see that no other
modules do. This is based on the fact that the message
generation algorithm only generates one inclusion message
for each module in the final structure. If all modules that
are supposed to be part of the final structure receive inclu-
sion messages, there are no additional inclusion messages
that could be received by the other, soon to be discarded,
modules. Therefore, the shape distribution algorithm operates
correctly.

The running time of the shape distribution algorithm is
O(nt), wheret be a bound on the transmission of a message
and n the number of modules in the structure. Each of the
n modules in the final structure requires a separate inclusion
message to be transmitted from the GUI to the root module,
where it will be distributed. The GUI does not have to
wait for one inclusion message to reach its final destination
before sending another. Instead, timet after sending the
first inclusion message to the root, we know that the root
has finished processing the message and can now accept
another. After anothert units of time, the root has passed
the second inclusion message on to one of its neighbors and
can accept a third message. The same constraints also apply
to all other modules in the system, so the system can accept
one new inclusion message everyt units of time. Therefore,
the system requiresO(nt) time to include alln modules in
the final structure.

E. Disassembly Algorithm

Once all modules which need to be included in the final
structure have received inclusion messages, the system is
ready to disassemble. The disassembly process is initiated
when the GUI is instructed to send a disassemble message.
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Fig. 14. Six inclusion messages are transmitted by the GUI tothe root module in order to include six modules in the final structure. The messages
propagate by following the arced inclusion chain pointers until they reach their destinations. The branch direction and initial hop count for each message
is indicated. Once a module knows that it is part of the final structure, it is shaded. Sometimes, as shown in (e), some inclusion chain pointers remain
intact even after the active chain has shifted away.

Pseudocode for the disassembly algorithm is given in
Algorithm 6. When a module receives a disassemble mes-
sage, it transmits an acknowledgment to the transmitter,
(line 13), and forwards the disassemble message to all of its
other neighbors, (line 15). Modules that are included in the
final structure perform no further tasks except to deactivate
specific Magswitches at the request of their un-included
neighbors. In comparison, modules that are not a part of the
final structure attempt to disconnect. First, they deactivate
all three of their Magswitches, (line 20). Second, for any
face lacking a Magswitch that is attached to a neighbor, they
send a disconnect request (DRQ) message to that neighbor,
(line 22). In return, the neighbor receiving the disconnect
request message deactivates the Magswitch on the receiving
face regardless of whether that module is a part of the
final structure. With all of their Magswitch deactivated and
the adjacent Magswitch of their neighbors deactivated, un-
included modules are free to fall away from the remaining
structure.

Theorem 4:The disassembly algorithm only disconnects
those modules which should not be a part of the final
structure.

Proof: We need to show that disassembly messages
reach each module and that only the specified modules
disconnect. Based on the correctness of the localization
algorithm discussed in Section IV-B, we know that disas-
semble messages reach all modules because the disassemble

messages are propagated identically to localization messages.
From above, we know that once each module receives a dis-
assemble message, it only disconnects from the structure if
the module has not received an inclusion message. Therefore,
the disassembly algorithm operates correctly.

The running time of this phase can be analyzed in terms
of t, the upper bound on message transmission andn, the
number of modules in the structure. Once a disassemble
message reaches a module, the time required for the module
to disconnect from its neighbors isO(1). Therefore, if there
aren modules in the structure, the time for the disassemble
messages to propagate to all modules isO(nt). This worst
case occurs when the modules form a single chain.

As with the localization algorithm, we can provide a
tighter bound if we are able to determinem, the length of the
longest of the set of shortest paths from the root module to
all other modules. In this case, the amount of time required
for the disassemble message to reach all modules isO(mt).

The disassembly algorithm currently transmits a disas-
semble message to every module in the structure. This
aspect of the algorithm can be optimized. An additional
optimization can be introduced in the algorithm because all
modules not included in the goal structure deactivate their
Magswitches regardless of whether they need to or not.
However, an algorithm which attempts to minimize these two
inefficiencies is impractical for a number of reasons. First,
the extra modules must deactivate all their Magswitches



Algorithm 6 The disassembly algorithm propagates any
received disassembly message on all faces and only instructs
the module to disconnect from the structure if it has not
received an inclusion message

1: procedure DISASSEMBLE( )
2: DAS-Received← FALSE
3:

4: repeat
5: for face← 1 to 6 do
6: msg←RxDequeue(face)
7:

8: if MsgType(msg) = DAS then
9: DAS-Received← TRUE

10: for i← 1 to 6 do
11:

12: if i = face then
13: TxEnqueue(i,ACK,1)
14: else
15: TxEnqueue(i,DAS,100)
16: end if
17:

18: if NOT Includedthen
19: if HasMagSw(i) then
20: Deactivate(MagSwitchi)
21: else
22: TxEnqueue(i,DRQ,100)
23: end if
24: end if
25:

26: end for
27: end if
28: end for
29: until DAS-Received
30: end procedure

before they are reused in another structure. (If they do
not, alignment during assembly is difficult.) It is easier to
precipitate this deactivation en masse when all modules are
connected than to individually deactivate each module after
disassembly. Second, an algorithm which only deactivates the
minimum number of Magswitches is computationally inten-
sive. Unfortunately, the algorithm is not as simple as turning
off any Magswitch which borders on the goal structure. Such
an algorithm fails in the case where the goal structure is
surrounded by two or more layers of unused modules. The
innermost layer would detach from the goal structure, but
the outer layer(s), because they encase the goal structure,
would maintain the initial configuration of the structure.
Because each module only has information about its near-
est neighbors, determining which unused modules need to
deactivate their Magswitches is difficult and may require
intense communication with a number of distant modules.
Finally, the algorithm we have presented operates just a
quickly in practice as a more selective algorithm. Shortly
after an unused module receives a disassemble message, it

begins to disconnect its Magswitches. The system does not
wait for all modules to receive the message before sloughing
its unused members. As a result, disassembly occurs almost
instantaneously.

F. Power Consumption Analysis

The power consumed by the Magswitches in each module
is the obvious factor in calculating the power consumption
of the system. Even modules that remain a part of the
final structure must devote a significant amount of power to
activating their Magswitches during the neighbor discovery
phase. Modules not included in the final structure must again
use energy to detach from the system. Because each module’s
Magswitches actuate at most twice during a complete self-
disassembly sequence, the power consumed by each module
is O(1), and the power consumed by the entire system is
O(n), wheren is the total number of modules.

Message passing will also contribute to the system’s power
consumption. The modules closest to the root will need to
pass a large number of messages, with the root passing the
most. The number of messages passed by the root during
neighboring discovery and disassembly isO(1). Because no
message is dependent on the size of the structure, the power
needed for message passing during neighbor discovery and
disassembly is alsoO(1). During the localization phase, the
root passes a message to the GUI for each of then modules
in the structure. The resultant power consumption for the root
is O(n). The power consumed by the entire system during
localization is O(n2). This limit is reached when system
is configured as ann-unit chain in which the root passes
n messages, the second module in the chain passesn− 1
message, the thirdn−2, and so on. A similarO(p2) power
bound applies to the shape distribution algorithm except that
p represents the number of modules in the goal structure.
(The root will pass one inclusion message of each ofp
modules in the final structure.)

In a small system such as ours, the largest power drain will
be devoted to actuating the Magswitches. In a large system
consisting of thousands or millions of modules, the power
devoted to message passing may begin to surpass the power
dedicated to Magswitch actuation. Which factor dominates
will depend on the specifics of the given system. Because
each module carries its own power source, theO(n) power
used by the Magswitches can be adequately supplied even as
the number of modules in the system becomes infinite. The
amount of energy a module can store will eventually limit
the growth of very large systems because the power needed
for inter-module communication will eventually exceed the
total energy stored in all modules. Even the act of sharing
power between modules will be unable to meet the demands
of the system.

V. PRACTICAL IMPLEMENTATION

While Section IV proves that the self–disassembly algo-
rithms work in theory, the algorithms, as described in that
chapter, sometimes fail in practice. The primary cause of
failure is lost messages, which can occur for two reasons.



First, these algorithms sometimes fail to successfully transmit
messages to the modules’ neighbors. Second, neighboring
modules are sometimes unable to communicate because they
were poorly aligned. While we could attempt to carefully
align the modules as we assembled them, imperfections in
the manufacturing process make it difficult to ensure that
every LED/phototransistor pair was able to communicate. For
example, one module that is not perfectly square can affect
the alignment of several neighboring modules. To account
for misalignment, we implemented two modifications to the
self–disassembly algorithms. Section V-B details how we
made the localization process robust to misalignment. Then,
Section V-C explains how we modified the way inclusion
messages are distributed by appending additional information
to all reflection messages. This resulted in a more reliable
shape distribution phase.

A. Synchronization

We found that if a module was attempting to send several
messages to a neighbor in quick succession, that some of
those messages were lost. We traced this problem back to
the way in which the transmission buffers were implemented.
When one of the high–level routines transmits a message on
a specific face, the new message overrides any message that
was already buffered for transmission on that face. Therefore,
if the message that was already pending in the buffer has not
yet been received by the neighboring module, it is lost. As a
result, if a module is busy communicating with many of its
neighbors, some of those neighbors, in their hurry to transmit
messages to the module, may drop some messages.

To rectify this problem, we synchronized the message
passing process. When a module receives any high–level
message that has a specific destination, (e.g., a shape distri-
bution or reflection message), it does not send an acknowl-
edgment immediately. Instead, it first checks to see if the
transmission buffer for the face on which the message should
be retransmitted is empty. If the buffer is empty, the algo-
rithm handling the message transmits an acknowledgment
back to the sender and then places the new message in the
transmission buffer of the appropriate face. If the needed
transmission buffer is not empty, the module never transmits
an acknowledgment back to the sender. As a result, the
sender continues transmitting the message until the needed
transmission buffer on the receiving module is available. As
a result of this synchronization, messages that have specific
faces over which they need to be forwarded, never override
any message already being transmitted on that face. In a
common scenario, this prevents one inclusion message from
overriding another.

All of the lower–level messages presented in Section III,
(except acknowledge and not acknowledge messages), in
addition to ping (PNG), localization (LOC), and disassemble
(DAS), messages automatically override any message already
in a face’s transmission buffer because they do not have
specific destinations. This is acceptable because these mes-
sages fall into one of two categories. They either modify
system–wide properties of the structure, or else they are

not used while system–critical messages, (like inclusion and
reflection messages), are being propagated. Table V-A shows
into which of the two categories each type of messages falls.

TABLE II

ALL MESSAGES THAT DO NOT NEED TO BE TRANSMITTED ON A

SPECIFIC FACE FALL INTO TWO CATEGORIES. EITHER THEY MODIFY

SYSTEM–WIDE PROPERTIES THAT INVALIDATE THE DATA CONTAINED IN

ANY MESSAGE THAT MUST BE RETRANSMITTED ON A CERTAIN FACE, OR

THEY DO NOT PROPAGATE THROUGH THE SYSTEM AT THE SAME TIME

AS MESSAGES THAT NEED TO BE RETRANSMITTED ON A CERTAIN FACE.

Message Type System–wide Mod. Not Prop. Concurrently

Disconnect All (DCA) Yes No
Discon. Request (DRQ) No Yes
Magswitch State (MSS) No Yes
Reset (RST) Yes No
Real Time Clock (RTC) Yes No
Ping (PNG) No Yes
Localization (LOC) No Yes
Disassemble (DAS) Yes Yes

It is acceptable for messages which modify system–wide
properties to override destination–specific messages because
they make irrelevant any information contained in a desti-
nation specific message. For example, a reset message can
safely override any inclusion or reflection message because
when the system is reset, it forgets any information that it
has amassed through the passing of inclusion and reflec-
tion messages. Likewise, we never need to consider some
messages overriding destination specific messages because
those messages are not presented in the system during the
same time periods. For example, a module finishes passing
all localization messages before it begins to pass reflection
messages. As another example, disassemble messages are
only injected into the system after all inclusion and reflection
messages have been sent. In practice, the synchronization
system described in this section effectively eliminates scenar-
ios in which messages are lost because they are overwritten
while in a transmission buffer.

B. Localization Modification

In the localization algorithm presented in Section IV-B,
the modules assume that the first face over which they
receive a localization message is their parent face. This
is problematic because the ability to receive inter–module
messages on a specific face does not correlate with the
ability to successfully send messages on the face. Using the
algorithms presented in Section IV, modules had parent faces
on which they were unable to transmit, (or the parent was
unable to receive). Some modules were able to localize, but
they were unable to tell the GUI of their existence because
they could not transmit reflection messages, (which follow
a sequence of parent pointers), back to the GUI. This type
of error affects more than just the modules that are unable
to successfully transmit information to their parents. It also
affects any module whose chain of parent pointers passes
through another module that cannot communicate with its
parent.



To rectify the problem, we modified how modules localize.
Instead of blindly accepting the first neighbor that transmits
a localization message as its parent, each module first checks
whether two–way communication with that neighbor is pos-
sible. This check does not require any additional messages;if
two–way communication is possible, the module should have
received an acknowledgment to one of the ping messages
it sent during the neighbor discovery phase. If the module
never received an acknowledgment of any of its pings, it
assumes that two–way communication with the neighbor is
impossible and waits for another neighbor, with whom two–
way communication is possible, to transmit a localization
message.

This modification has two effects on the system. First,
some modules, even if they can receive localization mes-
sages, may not localize. This does not affect the system’s
functionality because those modules would be unable to
inform the GUI of their presence even if they did localize. If
the GUI does not know about a module’s existence, it does
not matter if the modules are localized or not because they
would be uncontrollable anyway.

Second, the modification to the localization algorithm
affects its running time. It is no longer reasonable to assume
that localization messages can flow along the shortest path
from the root module to any other. Even if the structure is
not a single chain, some localization messages may have to
travel through alln modules in the structure before reaching
the final module. We can no longer claim that, ifm is the
length of the longest of the set of shortest paths from the
root module to any other, the running time of the algorithm is
O(mt). Instead, the running time of the localization algorithm
is O(nt), where t is the maximum time required by any
module to process a message and generate a response.

C. Shape Distribution Modification

The localization process is not the only aspect of the high–
level self–disassembly algorithms which can be affected
by communication failures. If a module cannot transmit
or receive on specific faces, the shape distribution process
may be impeded. The original message generation algorithm
presented in Section IV-C assumes that modules can reliably
communicate with all of their neighbors. As a result, it routes
inclusion messages through the faces which lie along the
shortest path from the root to any module included in the
final system configuration. Unfortunately, these paths may
sometimes cross faces which are unable to communicate with
their neighbors.

To operate successfully, the message generation algorithm
needs to know which faces can successfully communicate
and which cannot. To transmit this information to the
GUI, we modified the reflection messages. In addition to
the transmitter’s location and user identification (UID), the
reflection messages were modified to include a field that
indicates with which neighboring modules the sender can
successfully communicate. The GUI uses this information
when constructing the graph, G, of all modules which are
supposed to be included in the final structure. If a module that

is supposed to be in the final structure cannot communicate
with a neighbor that is also a part of the final structure, no
edge is inserted between them.

Accounting for missing communication links makes the
system more reliable and does not increase the theoretical
running time of the shape distribution algorithm because one
inclusion message can still be transmitted from the GUI to
the root everyt time units, the maximum amount of time
required by any module to process a message and generate
a response. It is the case that some inclusion messages will
have to travel longer than optimal paths in the structure to
reach their destinations. This implies that some messages will
travel through more modules than they did in the optimal
scenario. Therefore, the message load on some modules will
increase, andt may increase in turn.

D. Disassembly Challenges

Although the algorithms presented so far guarantee that all
modules not selected to be a part of the goal structure break
their Magnetic bonds with their neighbors, the algorithms
do not guarantee that the modules are able to physically
separate from the initial configuration. Even with the help
of gravity, some modules may not be able to separate from
the goal structure. These situations can be grouped into
three sets. The first set consists of all extra modules that
are completely surrounded by the goal structure. Without
a break or opening in the goal structure, there is no way
for these surrounded modules to separate themselves, and
for all practical purposes, they remain a part of the goal
structure. The existence of this set implies the obvious: it
is impossible to form hollow structures from an initial solid
block of material.

The second set with disconnection challenges is composed
of all extra modules which rest above some part of the
goal structure. These modules are problematic because they
cannot be removed from the structure by gravity alone. When
they deactivate their Magswitches and fall, they will come
to rest on the goal structure. Some additional effort must
be made to remove these modules. For example, the entire
goal structure could be shaken or rotated until all unused
modules fully separate. This set of modules does not, in
theory, prevent the formation of any type of structure. In
practice, the existence of the set ensures that some goal
structures will require additional manipulation before they
are completely realized.

The third set contains all extra modules whose movements
are constrained along one or more planes. For example,
an extra module whose left and right faces border on the
goal structure falls into this class. In some cases, this setor
modules may overlap with the second class mentioned above.
Ignoring the problems that these modules may be experience
when resting above the goal structure, modules that are a
constrained in one or more planes may become wedged
between their neighbors in the process of separating from
the goal structure. As before, this is not a theoretical barrier
to the success of disassembly. It can often be overcome with
some additional manipulation or vibration of the structure.



Better hardware design would also all alleviate the problems
associated with this class of modules.

VI. M ICHE EXPERIMENTS

Fig. 15. The final robot-like shape we “self-disassembled” using an initial
3-by-5 rectangle of modules. From start to finish, the self-disassembly
process required a total of approximately 90 seconds excluding any time
spent modeling the desired final shape.

Figure 15 shows an example shape sculpted by the Miche
system. This shape was generated out of a 3-by-5 single-
layer sheet of 15 modules. The root module was located in
the center of both axes. The final shape was the humanoid
robot shape shown in Figure 15. The ability to form a
humanoid shape is far from the limit of the Miche system.
Any solid 3D shape that can be constructed from 28 modules
is achievable in this system. Specifically, we have generated
a 15 module dog out of 27 modules, a flower, and many
abstract geometries. Each of these experiments has been
repeated multiple times.

In addition to experimenting with a range of shapes to
observe correctness, reliability, and overall completiontime,
we performed close to 200 experiments aimed at character-
izing the running time for the phases of the self-disassembly
algorithms on three canonical shapes: chains, squares, and
cubes. The rest of this section details the experiments done
with the canonical shapes.

To measure the running time of each algorithm, we used a
stopwatch feature built into the MATLAB GUI that controls
the system. A timer begins counting in fractions of a second
after the user instructs the GUI to begin the localization or
shape distribution process. After either of these processes
begins, pressing a key on the desktop computer’s keyboard
causes the GUI to record and display a split time. Pressing
either the localization or shape distribution button a second
time halts the associated process and the timer. The total
elapsed time is then displayed separately from the split time.
The split time can be used to record the time required for all
modules to simply receive localization or inclusion messages.
The total measured time indicates the time required for all
modules to notify the GUI that they received a localization

or inclusion message. In general, all modules receive their
messages several seconds before they can notify the GUI that
they have been received resulting in a difference between the
split and final times.

A. Neighbor Discovery Results

We tested the neighbor discovery process with modules
that had anywhere from one to six neighbors. The neighbor
discovery process worked correctly in all cases. When two
modules were brought into close proximity with each other
and aligned, they each detected the other’s presence and
latched together. Sometimes, if a module was poorly aligned
with a neighbor, it failed to detect it. Shifting either of
the modules slightly tends to fix this problem. Even if
two modules are not adjusted, and communication remains
impossible, it is unlikely to compromise the overall reliability
of a large system. In general, every module neighbors several
others, so communication and structural links are redundant.
Note that articulation points in the initial configuration are
critical to the system’s reliability. If communication through
such a point is impossible, communication with every node
distal to the articulation point will also be impossible. Inour
initial experiments, it was never the case that a module was
unable to communicate with all of its neighbors. In all of the
191 tests that we recorded, every single module successfully
connected to the structure through at least one point and
prepared for localization. That means the neighbor discovery
process operated correctly over 1,200 times.

Of course, there were some connections between neigh-
boring modules that failed to form, but these never hampered
the neighbor discovery process on a system-wide scale. We
found that if a module had only one or two neighbors it
was simple to align it such that connections were always
reliably formed. As the number of neighbors increased, it was
more difficult to ensure that a module connected to all of its
neighbors. Fortunately, because of the additional redundancy
associated with additional neighbors, the higher connection
failure rate was acceptable.

B. Localization Results

In each of the 191 experiments, we also characterized
the localization algorithm. We could observe and time the
algorithm’s progress in two ways. First, we were able to
monitor the algorithm’s progress by watching the LED on
each module. After a module localized, it began to flash its
LED. Second, as specified by the localization algorithm, the
modules transmit reflection messages after they are localized.
When one of these messages propagates back to the desktop
computer connected to the root module, the module that sent
the message appears in the GUI. Using the GUI, we were
able to measure the amount of time required for the LEDs
on all modules to begin flashing and the amount of time
required for all modules to appear in the GUI. We measured
these times for linear, square, and cubic structures of different
sizes. We were not able to measure the amount of time
required for all LEDs to begin flashing in a cubic structure
because the LEDs of the modules at the bottom and center



of the structure were obscured by other modules. In these
cases, we were still able to record how long it took before
all modules appeared in the GUI.

First, we measured the amount of time required for a line
of modules to localize. We recorded the localization times for
chains of modules that were one, four, seven, and nine units
long when the root module was at the end of the chain. In
the case of one module, we performed twenty experiments.
Because a single module localizes so quickly, we were
unable to accurately resolve the amount of time required
for the module’s LED to begin blinking. We were able to
accurately record how quickly a single module appeared in
the GUI. We performed 16, 15, and 15 experiments for the
4-, 7-, and 9-module cases, respectively. Figure 16 illustrates
the mean and standard deviation of the time required for all
user LEDs to begin blinking. Likewise, Figure 17 presents
the mean and standard deviation of the time required for all
modules to be displayed in the GUI. Both figures show a
linear relationship between the number of modules in the
chain and the time required for all to localize and transmit
their positions back to the GUI.
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Fig. 16. The time required for a chain of modules to localize is linear in
the length of the chain. The circles represent the average time required for
all modules to localize. For each different experiment, thewhiskers span
two standard deviations. When fitting the line to the data, the one–module
case was ignored because it was too difficult to resolve the time required
to localize one module.

The next experiment that we carried out used 1-by-1, 2-by-
2, 3-by-3, 4-by-4, and 5-by-5 square assemblies of modules.
In this set of experiments, the root module was always
chosen to be a corner module. We performed 20, 16, 17, 18,
and 6 trials for the 1-, 4-, 9-, 16-, and 25-module squares,
respectively. The time required for all modules to receive
the localization messages and activate their LEDs is shown
in Figure 18. The time required for all reflection messages to
return to the GUI, where they appear as modules, is shown
in Figure 19. In both figures, we have plotted the average
times as circles, and the whiskers represent the standard
deviations of the different experiments. Both plots, especially
the second, demonstrate a linear relationship between the
number of modules and the localization time.

Although we were unable to measure the time required

0 2 4 6 8 10
0

5

10

15

20

25

n (length of chain)

tim
e 

[s
ec

]

Return Time for All Localization Reflection Messages in a 1−by−n Chain

 

 

Norm of the Fitting Error:1.857

Fig. 17. The time required for all reflection messages transmitted by a
chain of modules to reach the GUI is linear in the number of modules in
the chain. The circles in the plot represent the average timerequired for all
reflection messages to propagate back to the GUI. The whiskers associated
with each data point span two standard deviations.
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Fig. 18. There is a linear relationship between the number ofmodules
in a square structure and the amount of time required for all modules
to receive a localization message. The circles represent the average time
for each different experiment. The associated whiskers reach one standard
deviation in each direction.

for all modules in a cubic structure to receive localization
messages, we did measure the amount of time required for
all of the modules to appear in the GUI. As before, the
root module was chosen to be a corner of the structure.
The number of different experiments we could run was
limited by the number of cubes available, (27), but we did
conduct 20, 16, and 6 experiments for 1–, 8–, and 27–
module cubic structures. The results of these experiments are
shown in Figure 20. As with the 1– and 2–dimensional cases,
the figure shows a linear relationship between the number
of modules in the structure and the time required for all
reflection messages to propagate back to the GUI.

Considering all of the localization experiments we exe-
cuted, the success rate of the localization algorithm was
excellent. In the 191 experiments, we only encountered 2
occasions where a single reflection message did not prop-
agate back to the GUI. Considering that the equivalent of
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Fig. 19. The time required for all reflection messages transmitted by a
square structure of modules to reach the GUI is linear in the total number
of modules in the square. The circles in the plot represent the average
time required for all reflection messages to propagate back to the GUI. The
whiskers associated with each data point span two standard deviations.
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Fig. 20. In a cubic structure, the amount of time required forall reflection
messages to propagate back to the GUI is linearly related to the total number
of modules. The circles represent the average time requiredfor each different
sized cubic structure. The associated whiskers reach one standard deviation
in each direction.

over 1,500 cubes were used in the experiments, this failure
rate is less than one percent. Unfortunately, it is difficult
to locate the source of the errors. The reflection messages
typically travel through several modules, making it difficult
to track a specific message. It is also possible that, due to
a malfunctioning module, the missing messages were never
transmitted.

Ignoring these two failures, the experiments were conclu-
sive and indicate a linear relationship between the number
of modules in a structure and the time required for all of
them to receive a localization message. This supports the
initial O(nt) bound that we proposed in Section IV-B, where
t is the maximum time required by any module to process a
message. The experiments do not support the tighterO(mt)
that we also proposed in that section. (Recall,m is the longest
of the set of shortest paths from the root module to any other,
and it scales linearly with the side length of any square or

cube.) This discrepancy can be explained by the fact that the
modules were running the modified localization algorithm
presented in Section V-B. This is the algorithm that checks
whether the module can successfully transmit messages to
whichever neighbor it chooses as its parent. As shown in
Section V-B, the theoretical running time of this algorithm
is O(nt) and agrees with our results.

The experiments also found a strong linear relationship
between the number of modules in a structure and the time
required for all reflection messages to return to the GUI. This
agrees with theO(nt) bound we proposed in Section IV-B
for the receipt of all reflection messages. In the case of the
reflection messages, there was never any guarantee that they
would return any faster thanO(nt).

C. Message Generation Results

The message generation algorithm worked flawlessly. In
each of the 191 experiments, we used the GUI to include all
the modules of the initial configuration in the final structure.
In all cases, the GUI successfully generated the shortest
possible path for all messages while taking into account
the constraints imposed by pairs of neighboring modules
that were unable to communicate with one another. In the
five cases where not all modules in a structure received
the inclusion messages destined for them, the source of the
failure was narrowed to a bad communication channel or a
faulty cube, never an incorrect message path.

The time required for the GUI to generate sequences
of messages is quantified in Figure 21. The plot displays
the time required to generate message sequences for chains
of modules in which the root was placed at one end and
all modules are included in the final structure. The figure
demonstrates a linear relationship between the length of
the chain and the time required to generate the sequence.
This matches the theoretical bound ofO(n) presented in
Section IV-C.
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Fig. 21. The time required by the GUI to generate sequences ofmessages
is linear in the number of messages that need to be generated.In particular,
the plot considers the time required to generate sequence ofmessages to
include every module in ann–unit chain. The circular data points represent
the average time required for eachn, and the whiskers span a total of two
standard deviations.



D. Shape Distribution Results

For each of the 191 experiments that we performed, we
included every module that was a part of the initial structure
in the final configuration. While not interesting from the
perspective of disassembly, including every module in the
final structure provided the most stringent test of the system.
As mentioned in Section IV-D, modules assume they are
not a part of the final structure unless they receive an
inclusion message. Therefore, including every module in
the final structure required that the maximum number of
inclusion messages be distributed by the structure. For each
experiment, we attempted to measure both the time required
for all modules to receive their inclusion messages and the
time for the associated reflection messages to return to the
GUI. We were able to measure the amount of time required
for all modules to receive their localization messages by
watching the user LEDs on the modules and using the split
function of the timer in the GUI. When a module determines
that it is a part of the structure, it changes its LED from
flashing to solid.

The specific experiments we used to test the shape distri-
bution algorithm were identical to the experiments used to
test the localization algorithm. We began by measuring the
time required to send inclusion messages to all modules in an
n–unit chain when the root module was placed at one end of
the chain. We repeated this experiment 20 times for 1 cube;
16 times for a chain of 4 cubes; and 15 times for chains
of both 7 and 9 cubes. We plotted the average time for all
inclusion messages to reach their destinations in Figure 22.
The plot shows a quadratic relationship between the number
of modules in the chain and the time required for inclusion
messages to reach them all. We also measured, and plotted
in Figure 23, the time required for all reflection messages
to return to the GUI. Typically, the last reflection message
returned to the GUI shortly after the last module received
its inclusion message, so the time required for all inclusion
messages to propagate back the the GUI is also quadratic in
n, the total number of modules in the system.

We have also performed 16 trials with 2-by-2–module
squares; 17 trials with 3-by-3 squares; 18 trials with 4-by-4
squares; and 6 trials with 5-by-5 squares. In each test, we
chose to place the root module in the corner of the square.
The average time required for all modules to receive their
inclusion messages, (and the associated set of error bars),
is shown in Figure 24. Figure 25 shows the closely related
time required for all reflection messages to return to the GUI.
Figure 25 does not include a data point for the case of a
25 module square because in the six trials, there was never
an outcome in which all 25 reflection messages returned
to the GUI. One or two messages always went missing.
Both figures show a strong quadratic dependence between
the number of modules in the square and the time required
for the shape distribution phase to complete.

We also experimented with modules arranged to form a
cube. We performed 16 experiments with an 8–module cube
and 6 with a 27–unit cube. The 20 trials with a single module
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Fig. 22. Time required for all modules in ann–unit chain to receive
inclusion messages varies asn2. In the plot, the circles represent the average
time required for all modules to receive their inclusion messages, and the
error bars cover a total of two standard deviations.
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Fig. 23. Given a chain of modules, the time required for the GUI to receive
all of the reflection messages that are sent during the shape distribution phase
is quadratic in the length of the chain. The circular data points are average
times and the whiskers span a total of two standard deviations.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

n (d2 / number of modules in square)

tim
e 

[s
ec

]

Time for All Modules to Receive Inclusion Messages in an d−by−d Square

 

 
Norm of Fitting Error: 5.352

Fig. 24. There is a quadratic relationship between the number of modules
in a square structure and the amount of time required for all modules to
receive an inclusion message. The circles represent the average time for each
different experiment. The associated whiskers reach one standard deviation
in each direction.
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Fig. 25. The time required for all reflection messages transmitted by a
square of modules during shape distribution to reach the GUIis quadratic
in the number of modules in the chain. The circles in the plot represent
the average time required for all reflection messages to propagate back to
the GUI. The whiskers associated with each data point span two standard
deviations.

were also included in this set of experiments because a single
module is also a cube. As before, we placed the root module
at the corner of the structure. Figure 26 shows the time
required for inclusion messages to reach each module in the
structure. The three data points can be fit perfectly by a
quadratic function.
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Fig. 26. The three average times required to transmit inclusion messages
to all modules in a cube can be fit perfectly by a quadratic function. The
average times, shown by the circles, are bounded by whiskerswhich extend
one standard deviation in each direction.

Over the course of all 191 experiments, we encountered
5 cases where some number of inclusion messages were not
received. This accounted for a total of 17 messages that were
missed. This means that in 5 cases, the desired structure
would have been incorrectly formed after one attempt at
shape distribution. This is a 2.6% error rate. By checking
for the correct set of reflection messages in the GUI, it is
easy to determine whether the shape information has been
distributed correctly. If it has not, additional attempts can be
undertaken without restarting the entire system.

In cases where several inclusion messages were not re-
ceived during one experiment, the cause could generally be
traced back to one poorly aligned IR LED/photodiode pair
that had possibly shifted since the modules decided it was a
valid message path. Because of the way inclusion messages
are distributed, a malfunctioning communication interface
can affect all modules which depend on that interface being
a part of the inclusion pointer chain that delivers their
inclusion messages. Even though 17 messages were lost, this
number is still less than 2 percent of the more than 1500
inclusion message that had to be sent over the course of all
experiments.

There were also 26 reflection messages that did not
propagate back to the GUI. This is also less than 2 percent of
the total number of reflection messages sent during the shape
distribution phase for all experiments. One explanation for
the slightly higher number of reflection messages that did
not return to the GUI during the shape distribution phase in
comparison to the localization phase is that during the shape
distribution phase, the reflection messages must contend with
the inclusion messages which are also propagating through
the system. The total number of messages places a high load
on the system, and it is possible that some messages reached
their timeouts before being acknowledged by a neighboring
module. This explanation is supported by the fact that most
reflection messages were lost in larger square and cubic
structures in which the modules near the root are handling
a proportionally greater number messages than in smaller
structures.

E. Shape Distribution Running Time Comparison

Section IV-D theorized that the running time of the shape
distribution algorithm would beO(nt), wheren is the number
of modules in the system, andt is the time required for
the slowest module to process a message. All experiments
indicate a quadratic,O(n2), running time. This quadratic
relationship may be explained by the way MATLAB behaves
when loaded with too much serial data. MATLAB, when
faced with a large amount of serial data, begins to drop or
corrupt many of the messages received from the root module.
In turn, this slowdown affectst because the synchronization
process described in Section V-A couples how quickly the
modules can exchange messages with how quickly MATLAB
can process them.

F. Disassembly Results

The disassembly process itself was not specifically tested
after each of the 191 experiments. It would have required
too much time to allow the modules to fall apart and then
reassemble them by hand. Additionally, the self–disassembly
and reassembly process would have required activating each
Magswitch twice. Over time, it would have amounted to a
significant drain on the batteries of each cube and would
have required more frequent recharging. Instead of sending
a disassemble message after each experiment, we sent a reset
message. Reset messages, like disassemble messages, are
propagated by broadcast and quickly reach all modules in a



structure. In each of the 191 recorded experiments, the reset
messages successfully reached all modules. This allows us to
conclude that disassembly messages would also have reached
all modules.

For a more specific test of the system’s ability to disas-
sembly, we analyzed the formation of the humanoid structure
mentioned at the beginning of this section and shown in
Figure 15. Starting from the same 3-by-5 sheet of modules,
we attempted to form the humanoid 26 times. In all but two
cases, every module that was not supposed to be a part of the
final humanoid structure disconnected. The two errors were
traced to a single Magswitch that was jammed and unable
to deactivate. After it was fixed, there were no additional
problems. For 10 of the 26 humanoid tests, we suspend the
initial 3-by-5 sheet of modules horizontally to see if the un-
necessary modules would fall away after they disconnected.
In seven of these experiments, all extra modules fell away
from the structure. In the other three cases, a single scrap
module became wedged between two of its three neighbors
while it was falling away from the structure. Based on the
15 experiments in which the running time was recorded,
the average time required to create the humanoid structure
was 90 seconds. This total consists of the time for neighbor
discovery, the time for module location in the structure,
the time for generating the location messages needed for
the shape transmission, and the time for propagating the
location messages. Disconnecting the excluded modules from
the structure happens nearly instantaneously and in parallel
around the structure. Therefore, the disconnection time is
excluded from the average creation time.

To further test the physical disassembly process, we gen-
erated a dog, as shown in Figure 27, five times. One trial is
recorded in Extension 2. In each case, the self-disassembly
algorithm operated flawlessly and all the appropriate modules
knew whether to disconnect or remain a part of the final
configuration. Because the dog model is a three-dimensional
structure, it is impossible for all of the extra modules to fall
away, even if the dog is suspended during disassembly. In
each of the five experiments, there were two scrap modules
that disconnected, but could not fall away because they
rested on top of modules that were a part of the final
structure. On average, there were an additional 2.4 modules
that disconnected from their neighbors, but became wedged
in the structure when they were supposed to fall away. By
rotating the structure or lightly tapping these modules, we
were able to achieve the desired final configuration.

The twice repeated Magswitch failure in the humanoid ex-
periment demonstrates that the system is vulnerable to certain
types of connector failures. If a Magswitch which borders
on the goal structure fails to disconnect, the goal structure
cannot be perfectly formed. In contrast, if a Magswitch
connecting two extra modules cannot release its hold, and the
consequent 2-by-1 supermodule is not physically prevented
from leaving the system, the connector failure is inconse-
quential. If the supermodule is unable to be ejected from the
structure, then goal formation again fails.

Despite these isolated Magswitch problems, the critical

Fig. 27. A 15 module Dog was constructed out of a 27 module block.
Note that during self-disassembly the original block was suspended using a
magnet. The excluded blocks fell off the structure.

component in the performance of the Miche system is
point-to-point message transmission. All of the steps in
the self-disassembly algorithm rely upon robust message
transmission and reception. Ignoring the fact that modules
can become wedged while trying to fall away from the
structure, all of the errors we observed were due to message
transmission or reception failures.

VII. C ONCLUSION

This paper proposes the concept of realizing three-
dimensional shapes by self-disassembly and provides a com-
plete solution that spans hardware design, systems infras-
tructure, distributed algorithms, and experiments. Making
objects bysculptinguses disconnection as the basic actuation
mechanism. Although this operation requires an external
force to remove extra modules, it is simpler and therefore
more reliable than making connections because it reduces
to letting go rather than seeking a connector and making a
robust connection to it.

The hardware prototype, Miche, proves the concept of
making shapes by disassembling. Our experiments with this
prototype demonstrate our hypothesis that making shape by
disassembly is robust. These experiments have also given us
insights on how to improve the system. In our future work we
plan to develop a smaller module with enhanced the point-
to-point communication. Since communication is responsible
for most observed failures we will re-design the system that
enables two adjacent modules to communicate via IR. In
addition, we also plan to design a better user interface and
to develop an automated assembly mechanism for the initial
structure.

The distributed algorithms developed for controlling the
system are provably correct and efficient in the space they use
and in the communication they require. The algorithms do
not require the complete shape description to be transmitted
to every module. No knowledge of the initial structure is
assumed. No aspect of the self-disassembly process relies
on global information about the initial shape or the desired



shape of the system. The system encodes and transmits shape
information very efficiently. The amount of storage required
by each module is constant. Since the running time of the
system is linear in the number of modules (or in the longest
chain of the structure) the algorithms scale nicely to larger
structures that need to be sculpted.

Despite the linearity of the running times, further advances
are needed before a system comprised of thousands or
millions of modules could be successfully deployed. Without
improvements, running times may stretch into hours or days.
Currently, in a cube of modules, it requires approximately
ten seconds per module for each module to receive its
inclusion message. In order to deploy a system with millions
of modules, this constant needs to be in the range of several
microseconds. This accomplishment is not too far over the
horizon, but it will require both hardware and software
refinements to the Miche system.

There are several ways in which we plan to optimize
the algorithms developed to accomplish self-assembly by
disassembly. We plan to investigate the optimal placement of
the root module because the running times of the localization
and disassembly algorithms are dependent on the length of
the longest path, (in the set of shortest paths), from the root
to all other modules. To minimize this length, we can search
over the results of an all-pairs shortest paths algorithm.
We also plan to use multiple root modules to distribute
shape information more efficiently. Ideal placement of these
modules requires further exploration but could theoretically
reduce the running time of the algorithms by a factor of
two. Furthermore, we believe it is possible to reduce the
running time to sub-linear for subclasses of structures. For
example, we believe that for the class of convex initial
shapes guaranteed sub-linear performance may be achieved.
One final avenue for improving performance is to apply
compression techniques aimed at reducing the overall time
and the number of messages required by the system.

A key lesson we learned from experimenting with the
Miche system is that communication remains a bottleneck
and therefore should be minimized as much as possible.
In our future work, we plan to increase both the speed
and robustness of communication through hardware and
algorithm improvements. We intend to increase the system’s
tolerance to communication errors and uncertainty by better
modeling communication failures and, in turn, developing a
fault-tolerant solution at the algorithm level.
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APPENDIX A: LIST OF MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at:
http://www.ijrr.org.

Extension Type Description

1 Video
Self-disassembly of a humanoid
robot showing the GUI operating
in parallel with the actual system

2 Video
Self-disassembly of a
suspended dog robot
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